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Abstract
A family of models was given to explain how the public bud-
geting process, as a multi-stage institutional decision making
mechanism transforms the stimuli characterized by Gaussian
distribution to skew, power law distributions. While the an-
nual change is generally incremental, deviations from this
incremental changes are more frequent, than the Gaussian
distribution suggests. A set of threshold models, reflecting
error-accumulation and friction, was suggested. The three-
threshold model seems to be good to describe appropriately
the basic statistical features of the data.

Introduction
This paper is a first report of a collaborative effort between
political scientists and people working on complex systems
and related areas.

Two of us (BJ and FB) have published a set of papers,
books focusing on annual budget changes (Bryan and
Baumgartner 2005). Leptokurtic distribution of percentual
budget changes were observed in a broad range of settings:
small increases and small decreases of budgets and budget
components are the most frequent, but time to time large
increases and cut-offs are observed as well. Most frequency
distributions appeared as linear on diagrams with double log
axes, which strongly suggests a special case of kurtosis, the
power-law distribution. Dynamic mechanisms leading to
power law are one of the hot topic in the theory and practice
of complex systems (Érdi 2007).

We are interested in explaning both of the possible macro-
scopic processes and motivations of the more microscopic
agents involved in the political decision system in a mathe-
matically non-formalized way. Some preliminary dynamic
model also were set up for simulating the institutional de-
cision processes. The input signals of a decision process
are subject of linear and non-linear transformations incorpo-
rating error-accumulation, threshold(s) and memory effects.
The input signals are considered as Gaussian distributions
and we are interested in the institutional mechanisms and the
assigned computational algorithms which transforms them
to non-Gaussian ones.
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Lessons from Political Science
Government budgets set public priorities; they are the
outcome of complex policy processes involving the nature
of the decision-making institutions, the preferences of
decision-makers (organized by political parties), and infor-
mational signals from a changing environment. In many
real-world information-processing situations, including
the study of public budgets, we do not have the luxury
of observing the actual informational inputs, because we
observe only whether the decision-maker attends to that
information and what action he or she subsequently takes.
As a consequence, most of the work in the area is in the
form of reconstructing decision-making process from the
distribution of outputs, supplemented by unfortunately too
few direct observational studies.

Early studies of public budgeting emphasized uncertainty
in the decision-making environment. Budgeting in the
absence of information about the impacts of decisions led
to an adjustment process rooted in simple decision rules
and bargaining among interests. This led to marginal or
incremental adjustments from the budgetary status quo,
with all major actors wary of big changes to the budgetary
base. Unless, that is, major exogenously generated shifts
caused the entire budgeting system to move up or down
(Davis, Dempste, and Wildavsky 1966).

There was, however, considerable dissatisfaction with
the approach based on quantitative observations of budget
outcomes. Sometimes they just didn’t look incremental,
even adjusting for the regime shifts estimated by (Davis,
Dempste, and Wildavsky 1966). Most arguments were
regression-based and centered on the size of the increment,
which sometimes looked pretty large.

In 1980, John Padget (Padgett 1980) shifted the terms
and methodology of the debate from regression studies to
the application ot the theory of stochastic processes. He
first showed that incremental decision processes implied
a Gaussian distribution of first differences, and developed
one particular model of decision-making, serial processing.
In that model decision-makers faced with a constraint
kept moving incrementally in the direction implied by the
constraint until they find a point that ”satisfices”. Hence



incremental processes under constraints can lead to non-
incremental budget changes - or perhaps more accurately,
attempts to be incremental can lead to non-incremental
decisions. Padget went on to show that the stochastic
process implications of serial decision-making for budget
proposals were either an exponential or a power function,
depending on whether choices were within a single policy
area or a mixture of several.

In the 1990s, Jones, Baumgartner, and True (JBT) initi-
ated a series of investigations based on a new dataset of con-
sistent measures of US Budget Authority since World War
II. Budget authority is a better overall measure than outlays,
because it is closer to the decision-making process; bud-
get outlays measure when actual expenditures occur. JBT
showed that budget distributions were clearly leptokurtic,
and definitely non-Gaussian, and that this finding was robust
across various time periods and aggregation levels. One ex-
ample is the US budget change histogram and a fitted Gaus-
sian distribution, see Fig. 1:
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Figure 1: Simple fitting of a Gaussian distribution with the
preserved mean and deviation

Data to a first approximation followed a double Paretian
or power distribution, because budgets can be cut as well
as increased (True, Jones, and Baumgartner 2007). Later
investigations by several researchers showed a remarkable
similarity in budget distributions across several democra-
cies, but considerable differences in the parameter estimates
for the power distributions characterizing the different
nations ((Jones et al. 2009)). The research ruled out
the incremental model and was consistent with the serial
decision approach.

The next step was to try to develop models of policy
change that were broader than either the incrementalist
model or Padget’s serial processing model, but would be
capable of incorporating them under appropriate circum-
stances. It the case of Padgett’s approach, models should
get beyond the postulation of constraints to generate the
distribution. That is, the operation of the constraints should
somehow be incorporated into the model.

The key was the recognition that humans are dispropor-
tionate processors of information - that is, they are incapable
of adjusting actions directly to the incoming information
that has implications for action ((Jones 2001)). There are a
variety of reasons for this inability, but the most important
is the inability of people to pay attention to multiple streams
of information at the same time. Instead, they juggle among
income streams, with emotional arousal being the central
adjustment mechanism. This leads to disjoint and episodic
shifts in attention to the information streams they face.
Punctuations in processing capacity, and hence in any action
taken, is a direct result of coping with numerous streams of
information in a complex world.

In political systems, there are good reasons to expect that
this tendency may be magnified. All systems have some
mechanisms for parallel processing of input streams, but
when policy action requires policy-making, then the classic
Simon ”bottleneck of attention” limits the agenda space.
Democracies have built-in error correction mechanisms in
that if policymakers are not appropriately responding, they
may be replaced.

”If we put together the limits of human information
processing and the characteristics of democracies that
encourage error correction, we get a model of politics
that is very static but reluctantly changes when signals are
strong enough. The system resists change, so that when
change comes it punctuates the system, not infrequently
reverberating through it.” ((Bryan and Baumgartner 2005)).

This reluctance was summarized in the twin notions
of cognitive and institutional friction. Both the cognitive
capacities of actors and the inherent conservative nature
of political systems caused a pattern that resembled the
stick-slip dynamics observed in the study of earthquakes
((Jones, Sulkin, and Larsen 2003), Jones and Baumgartner
2005a) and other ”critical phenomena” using the physicists’
terminology.

Jones and Baumgartner used the term ”error accumula-
tion” to characterize such mechanisms, and developed a sin-
gle threshold model to begin to account for the strongly lep-
tokurtic budget output distributions they observed. Errors,
in the sense of a mis-match between information inputs and
policy outputs, would accumulate in a policy area until the
errors exceeded a threshold, after which policymakers would
attend to the problem and initiate action. Simulations based
on the model suggested considerable agreement, but prob-
lematic mis-matches in some cases ((Jones and Baumgartner
2005)).

Error-accumulation: single threshold models
A dynamic model with an error-accumulating threshold-
based non-linearity and an infinite memory of earlier
signals. there is a single threshold, if the accumulated input
is below the threshold, the response is small, if it is above
above than large.



The variables and parameters of the model can be
summarized as follows:

Rt: response variable
St: input signal, (Gaussian random variable)
C: threshold
λ : efficiency parameter or friction
β: amplification parameter.

Error accumulation (incorporated as sum of the signals)
is a key feature of the model. 0 < λ < 1 , the efficiency
below the threshold C is lower the one, but definitely shold
be lower than β. This is one of the characteristic point of the
model: below the threshold there are smaller reaction than it
is above the threshold. The model has two versions. Error
accumulation can or cannot be reset to zero,

Rt =

{
βSt if

∑t−1
t′=k St′ > C,

λβSt otherwise

where k is the time of the resetting (k = 1 means no reset).
Simulations results for two situations (without and with

resetting) are shown in Fig. 2. Appropriate choice of the λ,
β, C parameters makes this model reach the actual kurtosis
values observed on real data. C = 1, λ = 0.4 and β = 1
were chosen.
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Figure 2: A leptokurtic distribution as a simulated response, com-
paring to a Gaussian distribution

.

What is the difference between the two models? The
counter spends a lot of time above the threshold and
also below in the first case. The higher the threshold the
narrower the output distribution (increasing the kurtosis)
but the rarer the ”overshooting”, i.e. the big changes. The
resulted output distribution is a sum of two Gaussians. In
the second case the output much narrower as we restrict
the ”time” what the counter can spend above the threshold,
and hence the weight of the wider Gaussian (β) in the sum
is smaller. However, there is one more difference. It is
hardly seen that the output distributions are asymmetric
(and hence they are not exactly sums of Gaussians, but can
be approximated very well). This asymmetry comes from
the requirements of threshold crossing direction: it can
only be crossed in the positive direction to switch into the
frictionless state.

In summary, the single threshold model cannot explain the
higher frequency of the occurrence of some extreme events.

Multiple threshold models
Two-threshold models
We might improve the fit to real date by introducing some
more thresholds, and for the different intervals different fric-
tions. First, a low threshold was introduced to take into ac-
count explicitly the dying out of some topics. On Fig. 3
the effect of this lower threshold is shown at three different
threshold values. When the lower threshold is ”strict”, i.e.
it is 0, the counter is not allowed the accumulate negative
values, so all random input signals which exceed the upper
threshold (here it is C2 = 1) remains unchanged both in fre-
quency and ”size”. This is shown on the upper figure, the
positive tail follows exactly the input tail. Allowing some
accumulation of negative values reduces the sharp hop at
the upper threshold. The output distribution is asymmetric,
although the negative side is still a compressed (λ = 0.4)
Gaussian.

The next extension is to describe some adaptation by mak-
ing the upper threshold a little noisy, see Fig. 4. The noisy
threshold is modeled by an additive white noise with zero
mean and 0.2 standard deviation. The noisy threshold soft-
ens the sharp changes seen in Fig. 3.

While the two-threshold model reflects the important fea-
tures of the budget change distributions. However, budget
changes distributions are not only narrow and asymmetric
with fat tails but they have a shoulder around the central
peak, that is the distribution does not decrease to zero so
sharply as a compressed Gaussian does. The introduction of
one more threshold helps.

Three-threshold models
The institutional decision making is obviously a multi-stage
process. The simplest way to incorporate the series of pro-
cesses into a model is to increase the number of thresholds.
Different frictions for negative and positive counter (i.e.
demand) were defined. Also it was necessary to smooth
the positive side of the output distribution which can be
remedied by introducing a second, upper threshold for the
real overshooting reactions and a specific friction for the
intermediate regime. This model gives different responses
in the negative counter depending on the sign of the actual
input: the response is different to an increase then to a
decrease demand. By incorporating these modifications
a much finer fit to the budget changes distributions was
obtained.

C1 = 3; upper threshold
C2 = 1.2; middle threshold
C3 = −4; lower threshold
λ1p = 0.03; efficiency for the region of positive accumu-
lated sum
λ1n = 0.02; efficiency for the region of negative accumu-
lated sum
λ2p = 0.3; efficiency between the two positive threshold
β = 1; and
T denotes the time of last resetting to 0 of accumulated
signal.
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Figure 3: Distribution with a low threshold with three different
values compared to a Gaussian distribution
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Figure 4: Distribution with three different low thresholds and a
noisy upper threshold compared to a Gaussian distribution
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The response

Rt =



βSt if
∑t−1

t′=T St′ > C1, T = t

λ2pβSt if C1 >
∑t−1

t′=T St′ > C2

λ1nβSt if
∑t−1

t′=T St′ < 0 ∧ St < 0

λ1nβSt if
∑t−1

t′=T St′ < C3, T = t

λ1pβSt if
C2 >

∑t−1
t′=T St′ > 0 ∨

0 >
∑t−1

t′=T St′ > C3 ∧ St > 0.

Simulation results
Here just two specific results are shown. Fig. 5 shows the
simulation of the French budget data with the fitted parame-
ters:
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Figure 5: Transformation of the Gaussian input signals to skew
distribution fitted to the French budget data. The upper figure
shows the input Gaussian sample distribution. The lower figure
shows the measured data histogram and the fitted model output his-
togram. Parameters of the fit: C1 = −3; C2 = 1.6; C3 = 4.6;
λ1n = 0.07; λ1p = 0.04; λ2p = 0.3.

Fig. 6 is

Discussion
Our general goal in this cooperation is to integrate the the
conceptual-empirical and computational perspectives of the
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Figure 6: Transformation of the Gaussian input signals to skew
distribution fitted to the US budget data. The upper figure shows
the input Gaussian sample distribution. The lower figure shows the
measured data histogram and the fitted model output histogram.
Parameters of the fit: C1 = −12; C2 = 0; C3 = 3; λ1n = 0.01;
λ1p = 0.04; λ2p = 0.3.



political decision making processes. The existing models
underlying the complex organizational decision-making for
government policy proved to be not satisfactory. Systems
characterized by friction remain ”stable” until the signals
from outside exceed a threshold. Our analysis suggests that
it is more likely there are multiple thresholds in the process.
What we hope to show in the future that institutional
decision making mechanisms can be better understood by
using the concepts and models of the theory of complex
systems.

Preliminary cooperation with Gábor Borgulya in formu-
lating models, and with János Minnich and János Tóth about
statistical problems are acknowledged.
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