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I, INTRODUCTION

HE present article continues

my earlier work, “The Variation

of Certain Speculative Prices”
(VCSP) [20]. There, it was argued that
the description of time series of prices
requires probability models less special
than the widely used Gaussian, because
the price relatives of ceriain price series
have a variance so large that it may in
practice be assumed infinite.

Section IT of the present work restates
the theoretical argument of VCSP, with
little mathematigs, but stress upon the
motivation of my generalization of the
Gaussian model. I trust that this will
(implicitly) show certain responses to
VCSP to have been unwarranted.

Because very similar reservations
about VCSP were often voiced by differ-
ent authors, and because I hope that they
will be withdrawn and do not want to
preserve them through controversy, the
text will name neither the friendly nor
the unfriendly commentators of VCSP,
though many are listed in the Bibliog-
raphy.

Section III is devoted to additional
empirical evidence in favor of my “stable
Paretian” model, relative to wheat, rail-
road securities, and rates of exchange or
of interest. Moreover, some unpublished
figures concerning cotton prices are in-
" *Research staff member, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, New York,
and Institute Lecturer, Massachusetts Institute of
Technology, Cambridge. The present text incor-
porates several changes suggested by Professor
Eugene F. Fama,
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corporated in Section IT. Much of the
newly published empirical evidence was
already quoted in the larger unpublished
work from which VCSP is excerpted
[20, n. 9].* The evidence now available is
so extensive that only a small fraction of
it can be reported below.

Section IV is a token contribution to
the statistical problems raised by VCSP.
The statistics of the stable processes has
raised many exciting and very new
questions and attracts increasing atten-
tion. The practical applicability of the
findings of VCSP is naturally much de-
pendent upon the development of statis-
tics.

The preparation of this paper having
been very slow, it would by itself give an
outdated idea of the status of the theory
started in VCSP. Much progress has
been made since, in references 9, 10, 22,
23, and 24 and in forthcoming papers by
Eugene Fama and myself, Reference 24
touches upon a currently active issue,
being devoted to various relations exist-
ing between, on the one hand, price
changes over fixed time intervals (such
as days) and, on the other hand, price
changes between successive transactions,
Though the distribution of the latter
changes is necessarily very short tailed
(for institutional and other reasons), the
number of transactions within a day is
sufficiently variable to account for the
long-tailedness of the distribution of
daily price changes.

1 This original of VCSP appeared as an IBM
Research Note in March, 1962.
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I. THE STABLE PARETIAN MODEL
OF PRICE VARIATION

A. BACHELIER'S THEORY OF SPECULATION

Consider a time series of prices, Z(2),
and designate by L({t,T) its logarithmic
relative

L(3, T) =log. Z(¢, Ty — log, Z (£).

The basic model of price variation, a
modification of one proposed in 1900 in
Louis Bachelier’s theory of speculation
[3], assumes that successive increments
L(T) have the following properties:
They are (@) random, () statistically
independent, (¢) identically distributed,
and (@) their marginal distribution is
Gaussian with zero mean. Such a process
is called a “stationary Gaussian random
walk” or “Brownian motion.”

Although his model continues to be
extremely important, all four of Bache-
lier’s assumptions are working approx-
imations that should not be made into
dogmas, In fact, writing in 19142
Bachelier himself [4] made no mention
of his earlier claims of the existence of
empirical evidence in favor of Brownian
motion, and noted that his original
model diverges from the evidence in at
least two ways: First of all, the sample
variance of L(#,7) varies in time. He
attributed this to variability of the popu-
lation variance, interpreted the sample
histograms as being relative to mixtures,
and noted that the tails of the histogram
could be expected to be fatter than in
the Gaussian case. Second, Bachelier
noted that no reasonable mixture of
Gaussian distributions could account for
the size of the very largest price changes,
and he treated them as “contaminators”
or “outliers.” Thus, he pioneered, not

1To my shame, I missed this discussion when
sampling this book and privately criticized Bachelier
for blind reliance on the Gaussian, Luckily, my
criticism was not committed to print, -

only in stating the oft-rediscovered
Gaussian random-walk model, but also
in exposing its oft-rediscovered major
weaknesses.

However, new advances in the theory
of speculation are still best expressed as
improvements upon his 1900 model: The
approach to price variation, proposed in
VCSP, shows that an appropriate gen-
eralization of hypothesis (@) suffices to
“save” (a), (b), and (¢) in many cases,
and in others greatly postpones the need
of amending them. I shall comment upon
Bachelier’s four hypotheses, then come
to the argument of VCSP. Readers ac-
quainted with VCSP may proceed im-
mediately to Section III.

B. RANDOMNESS

I have only a few words about the
description of price variation by a ran-
dom process. To say that a price change
is random implies, not that it is irration-
al, but only that it was unpredictable
before the fact and is describable by the
powerful mathematical theory of proba-
bility. Therefore, there are two alter-
natives to randomness, namely, “pre-
dictable behavior” and “haphazard be-
havior,” where I use the latter term as
meaning “unpredictable and not subject
to probability theory,” By treating the
largest price changes as ‘“outliers,”
Bachelier implicitly resorted to this
concept of ‘“haphazard.” This might
have been unavoidable in his time, but
the power of probability theory has
much increased since and should be used
to the fullest.

C. INDEPENDENCE

To assume statistical independence of
successive L(¢,T) is undoubtedly a sim-
plification of reality.® The single but

31 was surprised to see VCSP criticized for ex-
pressing blind belief in independence. For examples
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very strong defense of this hypothesis is
in the surprising fact that models making
this assumption account for many fea-
tures of price behavior.

Incidentally, independence implies
that no investor can use his knowledge
of past data to increase his expected
profit. But the converse is nof true.
There exist processes in which the ex-

touches on various aspects of the spectral
analysis of economic time series, also an
active topic whose relations with my
work have aroused interest; for example,
when a time series is non-Gaussian, its
spectral whiteness, that is, lack of cor-
relation, is compatible with great de-
partures from the random-walk hy-
pothesis).
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Fi16. 1.—Second moment of the daily chnntglf of log Z(#), with Z(2) the spot price of cotton. The period

1000-1905 was divided into thirty successive

ty-day samples, and the abscissa designates the number of

the sample in chronological order. Logarithmic ordinate. A line joins the sample points to improve legibility.

pected profit vanishes, but dependence
is of extremely long range, and knowl-
edge of the past may be profitable to
those investors whose utility function
differs from the market’s. See, for ex-
ample, the “martingale” model of refer-
ence 22, which is developed and general-
ized in reference 23 (the latter paper also

of reservations on this account, see its Sec. VII as
well as the final paragraphs of its Secs, ITI. E, IIL. F,
and IV, B,

D. STATIONARITY

One implication of stationarity is that
sample moments vary little from sample
to sample, as long as the sample length
is sufficient. In fact, it is notorious that
price moments often “misbehave” from
this viewpoint (though this fact is un-
derstated in the literature, since “nega-
tive” results are seldom published; see,
however, F. C. Mills [25]).

Figure 1is an example of the enormous
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variability in time of the sample second
moment. The points refer to successive
fifty-day sample means of [L(#1)]? for
cotton prices in the period 1900-1905
(recall that L(Z,1) is the daily logarithmic
price relative). According to Bachelier’s
model, these sample means should al-
ready have stabilized near the popula-
tion mean. Since no stabilization is in
fact observed, we see conclusively that
the price of cotton did not follow a
Gaussian stationary random walk.

To account for this, it is usual to
say that the mechanism of price varia-
tion itself changes in time. We shall,
loosely speaking, distinguish systematicj
random, and haphazard changes of
mechanism.

To refer to systematic changes is
especially tempting. Indeed, to explain
the temporal changes of the statistical
parameters of the process of price varia-
tion would constitute a worthwhile first
step toward an ultimate explanation of
price variation itself. An example of
systematic change is given by the yearly
seasonal effects, which are strong in the
case of agricultural commodities. How-
ever, in Figure 1 not all ends of season are
accompanied by large price changes, and
not all large price changes occur at any
prescribed time in the growing season.

The most controversial systematic
changes are those due to deliberate
changes in the policies of the government
and of the exchanges. The existence of
long-term changes of this type is un-
questionable. For example, Section IIT.
D of VCSP concluded that various meas-
ures of the scale of L(;,T) (such as the
interquartile interval) have varied in the
case of cotton prices between 1816 and
1958, One evidence is that lines fa and
2a of Figure 5 in VCSP, relative to the
1900's, clearly differ from lines 15 and

2b, relative to the 1950’s. This decrease
in price variability must, at least in part,
be a consequence of the deep changes in
economic. policy that occurred in the
early half of this century. However,
precisely because it is so easy to read in
the facts a proof of the success or failure
of changes in economic policy, the temp-
tation to resort to systematic non-
stationarity must be carefully controlled.

An example of “random change” is a
random-walk process in which the sizes
and probabilities of the steps are chosen
by some other process. If this second
“master process” is stationary, Z(f) it-
self is not a random walk but remains a
stationary random process.

The final possibility is that the vari-
ability of the price mechanism is hap-
hazard, that is, not capable of being
treated by probability theory. In prac-
tice, it is not very reasonable to resort to
the haphazard at this late stage: Indeed,
why bother to construct complicated sta-
tistical models for the behavior of prices
if one expects this behavior to change
before the model has had time to unfold?
Moreover, and more important, early
resort to the haphazard need not be
necessary, as is demonstrated by the
smoothness and regularity of the graph
of Figure 2, which is the histogram of
the data of Figure 1.

E. GAUSSIAN HYPOTHESIS

Bachelier’s assumption, that the mar-
ginal distribution of L(,T) is Gaussian
with vanishing expectation, might be
convenient, but virtually every student
of the distribution of prices has com-
mented on their leptokurtic (ie., very
long-tailed) character.! As mentioned,

4 For an old but eminent practitioner’s opinion,

see Mills [25]; for several recent theorists’ opinions
see Paul Cootner’s anthology [5].
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Bachelier himself realized this and re-
garded L{¢, T) as a contaminated mixture
of Gaussian variables; see reference 24.

F. INFINITE VARIANCE AND THE STABLE
PARETIAN DISTRIBUTIONS
Still other approaches were suggested
to take account of the failure of Browni-
an motion to fit data on price variation.

central assumptions, from which many
independently made observations can be
shown to be consequences. These obser-
vations are thus organized, and fresh
facts can be predicted. The ambition of
VCSP was to suggest such a central as-
sumption, the infinite-variance hypo-
thesis, and to show that it accounts for
substantial features of price series (of

100 .

T iTTTy T

Tl

nood OO

y vyl 1

[ 1 t 14

11

L vyl 11 113t

05 104

103 10-2

F16. 2—Cumulated absolute-frequency distribution for the data of Fig. 1. Abscissa: log of the sample

second moment. Ordinate; log of the absolute number of instances where

the sample moment marked as

abscissa has been exceeded. The stable Paretian model predicts a straight line of slope a/2 ~ 1.7/2, which

is plotted as a dashed line.

A common feature of all these ap-
proaches, however, is that each new
fact necessitates an addition to the ex-
planation. Since a new set of parameters
is thereby added, I don’t doubt that

reasonable “curve-fitting” is achievable
in many cases.

However, this form of “symptomatic
medicine” (a new drug for each com-
plaint) could not be the last word! The
effectiveness as well as the beauty of
science is that it sometimes evolves

various degrees of volatility) without
non-stationarity, without mixture, with-
out master processes, without contami-
nation, and with a choice of increasingly

accurate assumptions about interdepend-
ence of successive price changes.

When selecting a family of distribu-
tions to implement the infinite-variance
hypothesis, one must be led by mathe-
matical convenience (e.g., the existence
of a ready-made mathematical theory)
and by simplicity. For a probability
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distribution, one important criterion of
simplicity is the variety of the properties
of “invariance” that it possesses: For
example, it would be most desirable to
have the same distribution (up to some—
hopefully linear—weighting) apply to
daily, monthly, etc., price changes. An-
other measure of simplicity is the role
that a family of distributions plays in
central limit theorems of the calculus of
probability.

Following these reasons, VCSP pro-
posed to represent the marginal distribu-
tion of L(,T) by an appropriate member
of a family of probability laws called
“stable,””® which measure volatility by a
single parameter a® ranging between 2
and 0 and whose simplest members
are the symmetric probability densities
pa(w) = (1/7)§5 exp (—7s°) cos (su)ds.

Their limit case ¢ = 2 is, duly, Gauss-
ian, but my theory also allows non-
Gaussian or “stable Paretian’7 cases a. <
2, which indeed turn out to represent
satisfactorily the data on volatile prices
(see VCSP and Sec. III below).

In assessing the realm of applicability
of my theory, one should always under-
stand it as including its classical limit. Tt
is therefore impossible to claim that
VCSP was “disproved” when one has
pointed out price series for which the
Gaussian hypothesis may be tenable.

Now to discuss the main fact, that

8 Throughout the long-awaited second volume of
William Feller’s “Introduction to Probability” [11],
one finds a wealth of facts concerning these laws.
However, B, V. Gnedenko and A, N, Kolmogorofi’s
monograph [12] remains the only up-to-date book

discussing these laws in a single chapter. For a com-
pact briefer treatment, see J. Lamperti [15].

$ g is related to “Pareto’s exponent,” but it would
be extremely dangerous to underestimate the differ-
ences between the two concepts [19].

71 first proposed for these cases the term of
“Pareto-Lévy laws,” then tried to withdraw it. I
am now resigned to consider “stable Paretian’ and
“Pareto-Lévy’ as synonymous,

stable variables with e < 2 have an in-
finite* population variance (one says
sometimes that they have “no vari-
ance”). Concern was expressed at the
implication of this feature for statistics,
and surprise was expressed at the para-
doxically discontinuous change that
seems to occur when a becomes exactly 2.

This impression of paradox is un-
founded. The population variance itself
cannot be measured, and every measura-
ble characteristic of a stable distribution
behaves continuously near a = 2. We
shall present an example later on. Con-
sequently, there is no “black and white”
contrast between the Paretian case a <
2 and the Gaussian a = 2, but a con-
tinuous shading of gray,® which is less
desperate but more sensible and more
interesting. The fact that the population
second moment is discontinuous at & = 2
“only” shows that it is not well suited to
a study of price variation.1

In particular, the applicability of
second-order statistical methods is ques-
tionable. “Questionable” does not mean
“totally inapplicable,” because the sta-
tistical methods based upon variances
suffer no sudden and catastrophic break-
down as a ceases to equal 2. Therefore,
to be unduly concerned with a few specks
of “gray” in a price series whose a is
near 2 may be as inadvisable as to treat
very gray series as white. Moreover,
statistics would be unduly restricted if
its tools were to be used only where
justified. (As a matter of fact, the

8 T may at this point reassure those who expressed

in print the fear that I find E{Z* to be infinite be-
cause I inadvertently took the logarithm of zero.

*T do not propose this colorful metaphor as a
scientific terminology!

1 To my knowledge, a > 1 for prices, and the
first moment is well suited to the study of log Z{#).
(Z(#) itself is another matter.) However, the stable
{aws wi;h e <1 play a central role in economics
21, 23).
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quality of a statistical method is partly
assessed by its “robustness,” i.., the
quality of its performance when used
without justification.) However, one
should look for other methods. For ex-
ample, as predicted, least-squares fore-
casting (as applied to past data) would
have often led to very poor inferences;
least-sums-of-absolute-deviations  fore-
casting is always at least as good and
usually much superior, and its develop-
ment should be pressed.

This section will end by two remarks
concerning second and fourth moments,
respectively.

The behavior of sample second mo-
ments—Define V(a,N) as the variance of
a sample of &V independent random vari-
ables %1, . . . #a, . . . %y, whose common
distribution is stable of exponent a. To
obtain a balanced view of the practical
properties of such variables, it is best 2ot
to focus upon mathematical expectations
and/or infinite sample sizes. One should
rathér consider quantiles and samples of
large but finite size, Let us therefore
select a “finite horizon” by choosing a
value of ¥ and a quantile threshold ¢
(such that events whose probability is
below ¢ will be considered to be “un-
likely”). Save for extreme cases con-
tributing to a “tail” of probability g, the
values of V{a,N) will be less than some
function V(e,N,q) whose behavior sum-
marizes much of what needs to be known
about the sample variance.

As mentioned earliet, when N is finite
and g > 0, the function V(e,N,g) varies
smoothly with a. For example, over a
wide range of values of &N, the derivative
of V(a,NV,g) at a =2 is very close to
zero, so that V(e,N,q) changes very
little if e = 2.00 is replaced by, say,
a = 1,99, This insensitivity is due to the
fact that e = 2.00 and a = 1.99 only
differ in the sizes that they predict for

some outliers, constituting a small pro-
portion of all cases, whose effects were ex-
cluded by the definition of ¥V (a,&,9). By
increasing N, or by decreasing ¢, one
decreases the range of exponents in
which a is approximable by 2.

If one really objects to infinite vari-
ance, while being only concerned with
meaningful finite-sample problems, one
may “truncate” U so as to attribute to
its variance a very large finite value
depending upon a, &, and ¢. The result-
ing theory may have the asset of famili-
arity, but the specification of the value
of the truncated variance will be useless
because it will tell nothing about the
“transient” behavior of V(a,N,q) when
N is finite and small. Thus, even when
one knows the variance to be finite but
very large (as is the case in certain of my
more detailed models of price variation;
see [23]), the study of the behavior of
V(a,N,9) is much simplified if one ap-
proximates the distribution with finite
but very large variance by a distribution
with infinite variance. This feature can
be illustrated by the following homely
example: It is well known that photog-
raphy is simplest when the objectisatan
infinite distance from the camera. There-
fore, even if the actual distance is known
to be finite, the photographer ought to
set the distance at infinity if that dis-
tance exceeds some finite threshold, de-
pending upon the quality of the lens and
its aperture.

The behavior of sample kuriosis—
Pearson’s kurtosis, a measure of the
peakedness of a distribution defined by
E(UYEWUI]2 — 3, was discussed in
VCSP. But the discussion lacked numer-
ical illustration and was called obscure,
and additional detail may be useful. If
E(U? = o, the value of the kurtosis
is undeterminate. One can, however,
show that, as N — , and if U is stable
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with ¢ < 2, the random variable =¥, U}
[Z¥_ U2 tends toward a limit that is
different from zero. Therefore, the “‘ex-
pected sample kurtosis,” defined as

EiNEI:; U,.4[ i‘ U,a]’— 3t

is asymptotically proportional to N.

G. THREE APPROXIMATIONS TO A STABLE DISTRI-
BUTION: IMPLICATIONS FOR STATISTICS AND
FOR THE DESCRIPTION OF THE BEHAVIOR OF
PRICES
It is important that there should exist

a single theory of prices that subsumes

various degrees of volatility. My theory

is unfortunately hard to handle, while
simple approximations are available in

T T T 717 T T
60
50
40

30

20

100 500

cotton, 1900-1905. The abscissa is the sample size. Linear coor

The kurtosis of L(¢,1). was plotted on
Figure 3 for the case of cotton, 1900-
1905, and is indeed seen to increase
steeply with N. Though exact compari-
son is impossible because the theoretical
distribution is not yet tabulated, this
kurtosis indeed fluctuates around a line
expressing proportionality to sample
size. (For samples less than fifty, the
kurtosis was negative.)
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F1a. 3.—Sequential variation of the kurtosis of the daily chzgilges of log Z(#), with Z(#) the spot price of

ates.

different ranges of values of a. Thus,
given a practical problem with a finite
time horizon &, it is best to replace the
continuous range of degrees of “gray-
ness” by the following trichotomy (where
the boundaries between the categories
are dependent upon the problem in
question).

The Gaussian a = 2 is best known and
simplest, Here, not having to worry
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about a long-tailed marginal distribu-
tion, one stands a reasonable chance of
rapid progress in the study of depend-
ence. For example, one can use spectral
methods and other covariance-oriented
approaches. In the immediate neighbor-
hood of the Gaussian, Gaussian tech-
niques cannot lead one too far astray.
In the zone far away from e = 2, an-
other kind of simplicity reigns. Sub-
stantial tails of the stable Paretian law
are approximable by Pareto’s hyperbolic
law, with the same a-exponent ruling
both tails. The prime example of this
zone was provided by the cotton prices
studied in VCSP. In the present paper,
we shall examine some other price series
of similarly high volatility: the prices of
some nineteenth-century rail securities
and some exchange and interest rates.
The third and final zone constitutes a
transition between the almost Gaussian
and the highly Paretian cases and is far
more complicated than either. It also
provides a test of the meaningfulness and
generality of the stable Paretian hy-
pothesis: If that hypothesis holds, the
histogram of price changes is expected
to plot on bilogarithmic paper as one of
a specific family of inverse-S-shaped
curves. (Lévy’s a-exponent, therefore,
is not to be confused with a “Pareto”
slope for a straight bilogarithmic plot
[18].) If the stable Paretian hypothesis
failed, the transition between the almost
Gaussian and the highly Paretian cases
would be performed in some other way.
We shall examine in this light the varia-
tion of wheat prices, and we shall find
it to conform fully to the stable Paretian
prediction concerning the “light gray”
zone of low but positive valuesfor2 — o
and medium volatility. Section III. A
below, where wheat data are examined,
is thus seen to have a purpose similar to
Fama’s 1964 Chicago thesis [9], which
was the first to test further the ideas of

Reproduced with permission of the copyright owner.

VCSP. To minimize “volatility” and
maximize the contrast with my original
data, Fama chose thirty stocks of large
and diversified contemporary corpora-
tions and found their stable Paretian
“grayness” to be unquestionable al-
though less marked than that of cotton,

1. ADDITIONAL DATA CONCERNING
LOGARITHMIC RELATIVES
OF PRICES
A. THE VARIATION OF THE PRICE OF WHEAT
IN CHICAGO, 1883-1936

Introduction—Contrary to the spot
prices of cotton, which refer to standard-
ized qualities, wheat cash prices refer
to the variable grades of grain. Hence,
at any given time (say, at closing time),
one can at best speak of a span of cash
prices, and the closing spans correspond-
ing to successive days very often overlap.
As a result, the week is probably the
shortest period for which one can reason-
ably express ‘“the” change of wheat
price by a single number rather than by
an interval. In any event, the week was
chosen in the present work because it is
used in H. Working’s classic monograph
[26].1*

The stable Paretian hypothesis for
wheat.—It had been suggested [14] that
wheat price relatives follow a Gaussian
distribution. Indeed, a casual visual
inspection of the histograms of these
relatives, as plotted on #atural coordi-
nates, shows them to be nicely “bell
shaped.” The importance of the “tails”
is, however, notoriously underestimated
by plotting the data on natural coordi-
nates. It is, on the contrary, stressed by
using probability paper. As seen in
Figure 4, probability-paper plots of

311t follows that, despite the length of the 1883~
1936 record, the number of items in the series of
wheat prices is not as large as one might have hoped

—although it is naturally very long by the standards
of economics.
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wheat price relatives are definitely S-
shaped (though less so than the plots
relative to cotton). As the Gaussian
corresponds to a = 2, and as I found the
value a = 1.7 for cotton, it is natural to
investigate whether wheat is stable
Paretian with an a contained between
1.7 and 2.

The evidence of doubly logarithmic
grephs.—As seen in Figure 5, reproduced
from VCSP, this stable Paretian hy-
pothesis would imply that every doubly

logarithmic plot of a histogram of wheat
price changes should have a character-
istic S-shape. It would end with a “Pare-
tian” straight line of slope near 2, but
it would start with a region where the
local slope increases with # and even
begins by exceeding markedly its asymp-
totic value [19].

The above conjecture is indeed veri-
fied, as seen in Flgures 6 and 7. More-
over, by comparing the data relative to
successive subsamples of the period
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1883-1936, I found no evidence that the
law of price variation has changed in
kind, despite the erratic behavior of the
outliers.

This is evidence that the stable
Paretian hypothesis has predicted how a
price histogram “should” behave, when
it was only known to be intermediate
between the highly erratic cotton series

and the minimally erratic Gaussian
limit,

To establish the “goodness of fit” of
such an S-shaped graph would unfortu-
nately require an even larger sample of
data than in the case of the straight
graphs characteristic of cotton, while we
know the available sample sizes to be
rather smaller, Thus the doubly loga-
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rithmic evidence is wnavoidably less
clear cut than in the case of cotton.

tcThe evidence of sequential variance.—
When a series of prices is approximately
stationary, a test of whether a = 2or
a < 2 is provided by the behavior of
the sequential sample second moment.
If a < 2, the median of the distribution
of the sample variance increases as
N-t2ha for “large” N, while it tends toa
limit when « = 2. More important, the
variation of the sample variance (about
its median value) becomes increasingly
erratic as a departs from 2, Thus, the
cotton second moment increases very
erratically, but the wheat second mo-

ment should increase more slowly and
more regularly. Figure 8 shows that such
is indeed the case.

Direct test of the stability—The term
“stable” arose from the fact that, when
N “stable” random variables U, are in-
dependent and identically distributed,
one has '

N
Pr[N- X U2 4| =PrlUa2 ul.

n=

The stability of Gaussian variables
(e = 2) is well known and often used in
elementary statistics.

I settled on N = 4. When the ran-
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Fi6. 6—Weekly changes &f loﬁiczh(t), with Z(i) the price of wheat as reported by Working. Ordinate: log
w

of the absolute frequency wi
ative changes, the upper scale to positive changes.

L 2 u, respectively L < —u. Abscissas: the lower scale refers to neg-
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dom variables U/, are the weekly price
changes, Zi.., Un is the price change over
a “lunar month” of four weeks. Since «
is expected to be near 2, 4-1/s will be
near 1.

One can see in Figure 4 that weekly
price changes indeed have an S-shaped
distribution wndistinguishable from that
of one-half of monthly changes.? (The
bulk of the graph, corresponding to the
central bell containing 80%, of the cases,
was not plotted for the sake of legibil-
ity.) Sampling fluctuations are apparent
only at the extreme tails and do not ap-
pear systematic.

The combination of Figures 6 and 7
provides another test of stability. They
were plotted with absolute, not relative,
frequency as the ordinate, and the stable
Paretian theory predicts that such curves
should be superposable in their tails,
except, or course, for sampling fluctua-
tions. (Roughly, the reason for this pre-
diction is that, in a stable Paretian uni-
verse, a large monthly price change is of
the same order of magnitude as the
largest among the four weekly changes
adding to this monthly change.) Clearly,-
wheat data pass this second test also.

It should be stressed that the two
tests, though using the same data, are
distinct conceptually: Figure 4 compares
one-half of a monthly change to the
weekly change of the same frequency;
Figures 6 and 7 compare monthly and
weekly changes of the same size. Stabil-
ity is thus doubly striking.

The evidence of yearly price changes—
Working [26] also published a table of
average January prices of wheat, and
Figure 4 also includes the corresponding
changes of log Z(t).

Assuming that successive weekly price

1 The same method was applied by Fama [9] to

common-stock price changes, and he also found that
it is a favorable test of their stability,

changes are independent, the evidence
of the yearly changes again favors the
stable Paretian hypothesis. It is aston-
ishing that the hypothesis of independ-
ence of weekly changes can be con-
sistently carried so far, showing no dis-
cernible discontinuity between long-term
adjustments to follow supply and de-
mand, which would be the subject matter
of economics, and the short-term fluctua-
tions that some economists discuss as
“mere effects of speculation.”

B. THE VARIATION OF THE PRICES OF
RATLROAD STOCKS, 1857-1936

Railroad stocks were pre-eminent
among corporation securities that played
for nineteenth-century speculators a role
comparable to that of the basic com-
modities. Unfortunately, the convenient
book of F. R. Macaulay [17] reports
them incompletely: (1) For each of the
major stocks, it gives the mean of the
highest and lowest. quotation during
the months of January; (2) for each
month, it gives a weighted index of the
highest and lowest quotation of every
stock. _

I began by examining the second se-
ries, even though it is averaged too many
times for comfort. If one considers that
there “should” have been no difference
in kind between various nineteenth-
century speculations, one would expect
railroad stock changes to be stable
Paretian, and averaging would bring an
increase in the slope of the corresponding
doubly logarithmic graphs, similar to
what has been observed in the case of
cotton price averages (Sec. IIT. E of
VCSP). Indeed, Figure 9, relative to the
variation of the monthly averages, yields
precisely what one expects for such aver-
ages from Paretian processes with an
exponent very close to that of cotton.

On yearly data, on the contrary, aver-
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aging has little effect. Figure 10 should
be regarded as made of two parts, the
first five graphs being relative to com-
panies with less-than-average merger ac-
tivity, the other to companies with
above-the-average merger history.

_ The first five graphs, in my opinion,
are a striking confirmation of the ideas
suggested by speculation on cotton.

C. THE VARIATION OF INTEREST
AND EXCHANGE RATES

Introduction.~—Various rates of money
—and especially the rate of call money in
its heyday—are reflections of the over-
all state of a speculative market. One
would therefore expect to find that the
behavior of speculative prices and of
speculative rates present strong simi-
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F16, 9.—Monthly changes of log Z(f), with Z(¢) Macaulay’s index of rail stock prices, Abscissas and

ordinates as in Fig. 6.

Basically, one sees that the fluctuations
of the price of these stocks were all stable
Paretian, with the same a-exponent
(clearly below the critical value 2).
(Moreover, they all had practically the
same value of the positive and negative
“standard deviations” ¢’ and ¢”, defined
in VCSP.)

For the companies with an unusual
amount of merger activity, the evidence
is similar but more erratic.

larities, But one cannot expect them to
be ruled by identical processes, For ex-
ample, one cannot assume (even as
rough approximations) that successive
changes of a money rate are statistically
independent: Such rates would indeed
eventually blow up to infinity, or they
would vanish. Neither behavior is admis-
sible. As a result, the distribution of Z(?)
itself, which is meaningless when Z is a
commodity price, is meaningful when it
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is a money rate. Moreover, when in-
vestigating changes, one will study
Z(¢ 4 T) — Z(¢) rather than log Z(¢ +
T) —log Z(¥).

The rate of interest on call money—In
Figure 11, the abscissa is the excess of
Macaulay’s rate of call money [16] over
its “typical” value, 6 per cent. I have
not even attempted to plot the distribu-

factors (such as the upper quartile) have
changed—a form of non-stationarity—
but the exponent a seems to have pre-
served a constant value, lying within the
range in which the law of Pareto is
known to be invariant under mixing of
data from populations have the same a
and different « [18].

Other rales of interest—Examine next

100
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Fic. 11.—The distribution of the excess over 6 per cent of Macaulay's [16] monthly average of call money
rates, Ordinate: absolute frequencies. Bold line: total sample 1857-1936, Thin lines, read from left to right:
subsamtﬁla 1877-97, 1898-1936, 1857-76. Note that the second subsample is twice as long as the other two,

Thus,
in time.

tion of the other tail of the difference
“rate minus 6 per cent,” since that ex-
pression is by definition very short tailed,
being bounded by 6 per cent, while the
positive value of “rate minus 6 per cent”
can go sky high (and occasionally did).

The several lines of Figure 11 cor-
respond, respectively, to the total period
18571936 and to three subperiods. They
show that call money rates satisfy a
single-tailed Paretian law, with an ex-
ponent markedly smaller than 2. Scale

e general shape of the curves has not changed except for scale, and the scale has steadily decreased

the distribution of the classic data col-
lected by Erastus B. Bigelow (Fig. 12,
dashed line), relative to “street rates of
first class paper in Boston” (and New
York) at the end of each month from
January 1836 to December 1860 (Bige-
low also reports some rates applicable at
the beginnings or middles of the same
months, but I disregarded them to avoid
the difficulties due to averaging). The
dots on Figure 12 again represent the
difference between- Bigelow’s rates and
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the typical 6 per cent; their behavior is
what we would expect if essentially the
same stable Paretian law applied to
these rates and those of call money.
Examine, finally, a short sample of
rates, reported by L. E. Davis [6], on
the basis of the records of New England
textile miuds, These rates remained much
closer to 6 per cent than those of Bigelow

that condition the variations of the val-
ues of the two currencies taken separate-
ly. This differential quantity has even
an advantage over the changes of rates;
indeed, one can consider it without re-
sorting to any kind of economic theory,
not even the minimal assumption that
price changes are more important than
price levels. We have therefore plotted
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F16. 12.—~Four miscellaneous distributions of interest and exchange rates. Reading from the left: two dif-
ferent series of dollar-sterling premium rates, Crosses: ten times the excess over 6 per cent of Davis's textile

interest rate data. Dashed line: excess over 6 per cent of Bigelow's money rates. The four series,
short, were chosen haphazardly, The point of the figure is

curves,

and were plotted in such a way that the
crosses of Figure 12 represent ten times
their excess over 6 per cent. The sample
is too short for comfort, but, until fur-
ther notice, it suggests that the two
series have differed mostly by their
scales.

The dollar-sterling exchange in the nine-
teenth century.—The exchange premium
or discount in effect on a currency ex-
change seems to reflect directly the dif-
ference between the various “forces”

all very
¢ remarkable similarity between the various

the values of the premium or discount
between dollar and sterling between 1803
and 1895, as reported by L. E. Davis
and J. R. T. Hughes [7] (Fig. 12). This
serigs is based upon operations which in-
volved credit as well as exchange; in
order to eliminate the credit component,
the authors used various series of money
rates; we also plotted the series based
upon Bigelow’s rates. One will note that
all the graphs of Figure 12 conform
strikingly with the expectations general-
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ized from the known behavior of cotton
prices.

IV. STATISTICAL ESTIMATION OF a BY
MAXIMUM LIKELIHOOD, WHEN
o IS NEARLY 2

A. INTRODUCTION

A handicap for the theory of VCSP is
that no closed analytic form is known for
the stable Paretian distributions, nor is
a closed form likely to be ever dis-
covered. Luckily, the cases where the
exponent « is near 1.7 can be dealt with
on the basis of an approximating hyper-
bolic distribution. Now let a be very
near 2, To estimate 2 — a or to test
o = 2 against @ <2 is extremely im-
portant, because a = 2 corresponds to

the Gaussian law and differs “qualita--

tively” from other values of a. To esti-
mate such an a is very difficult, however,
and the estimate will be intrinsically
highly dependent upon the number and
the “erratic” sizes of the few most
“outlying’” values of #,. I hope to show
in the present section that simplifying
approximations are fortunately available
for certain purposes. The main idea is
to represent a stable Paretian density as
a sum of two easily manageable expres-
sions, one of which concerns the central
“bell,” while the other concerns the
tails.

B. A SQUARE CENTRAL “BELL,” WITH |
HYPERBOLIC SIDE PORTIONS

Consider the following probability
density, which can be defined for § <
a<2:

pe)=a—3%

if |#] < 1 (adding up to 2¢ — 3);
p@) = (2 — a)a|u|~c

if |u| > 1 (adding up to 4 — 2a).

When o is near 2, (#) is a rough first
approximation to a stable Paretian den-

sity. Its advantage is to lead itself
readily to maximum-likelihood estima-
tion.

Let indeed #1, .+ . %sy ..., ux be a
sample of values of U, ordered by de-
creasing absolute size, and let M of
these have an absolute size greater than
1. Given these sample values #,, the
likelihood of a value of a is defined as
being Mp(u,), which equals

(a—%)""”[ (2—a)a)¥
[H l ] (¢+!)

The logarithm of the likelihood is
L(a) = (N —=M) log(a —%)

M
+M log [(2—a)al—(a+1) D log| ta].

=l

This L(a) is a continuous function of a.
If M = 0, it is monotone increasing and
attains its maximum for o = 2. This is
a reasonable answer, since |U| < 1 for
a=2,

If M > 0, on the contrary, L(a) tends
to — o as a tends to either of the ends
of its domain of variation, namely, % and
2. It has therefore at least one maximum,
and the most likely value of a, namely
4, is among the roots of the third-degree
algebraic equation.

Thus, & only depends upon M/N and
upon M—ZY; log |ua| = V, the loga-
rithm of the geometric mean of these
#,’s whose absolute value exceeds 1.

Let us examine the latter term closer.
The random variable log |U|, condi-
tioned by log |U| > 1, has for distribu-
tion
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Pr(log |U| > %] log [U[] > 0)
= exp (—an) .

Its expected value is 1/a. Therefore, as
the sample sizes M and N tend to in-
finity, one will have

lim[‘—ll-—l-i—[-ilog () ] = 0.

As a result, in the first approximation, one
can neglect the term

l--iiloglu..l
a Mn-!.

when both M and N are large. The
equation in & simplifies to the first
degree and yields

2—-6 M
&_g N—-M
2
that is,
&=2—M/2N .

In particular, & no longer depends
upon the precise values of the #, but
depends only on their relative numbers
in the two categories |U] <1 and
|U| > 1. The ratio M/N may, inci-
dentally, be interpreted as the relative
number of outliers for which |U| > 1.

For example, if M/N is very small, &
is very close to 2. (At the other end, if
N/M barely exceeds 1, & nears §. How-
ever, this is a range in which p(u) is a
very poor approximation to a stable
Paretian probability density.)

It may be observed that, knowing N,
M/N is an asymptotically Gaussian
random variable. We have thus easily
proved that 4 is asymptotically normally
distributed for all values of a.

In a second approximation, valid for
a near 2, one will insert « = 2 in com-
puting the value of !

1 1
W=;-ﬂ210g|u,.l.
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The equation in & will thus go down
in degree from the third to the second.
One of its roots is very large and ir-
relevant; the other root is such that
a — (2 — M/2N) is proportional to W.

C. SCOPE OF THE ESTIMATION PROCEDURE
BASED UPON THE COUNTING OF OUTLIERS
The method of Section IV. B, namely,
estimation of & from M /N, applies with-
out change under a variety of seemingly
generalized conditions:
1, Suppose that the tails are asym-
metric, that is,

() = (2 — a)ap'r & i 4>1

) = 2 — )ap”|u|-eM i n< -1,
where p’ + $” = 1. To estimate a, one
will naturally concentrate upon the ran-
dom variable |U|, which is the same as
in Section B.

2. Further, the results of Section B
remain valid if the conditional density
of U, given that |U| < 1, is non-uni-
form but independent of a. Suppose, for
example, that for |%]| < 1, p(x) is equal
to (e —§) multiplying the truncated
Gaussian density D exp (— #%/2¢9),
where 1/D{¢) is defined as equal to

7! exp (— s?/20%)ds. The likelihood of
a then equals

[D(a')Z"‘1 (a—% ]N_M
Xexp(—nilz%:; [(2=a)a]¥

A

X[H lunl]—(m).

ne=l

The maximum likelihood, considered as
a function of the Uy, is unchanged from
Section IV. B,
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