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Abstract
The role of magnetic resonance (MR) neuroimaging in studying brain development in the first three decades of life is reviewed, in
terms of its relevance to pediatric neuropsychology. This review places an emphasis on displaying development neuroimaging
findings in various types of growth plots, diagrams and figures. MR imaging (MRI) methods can be divided into both structural
and functional approaches for brain development quantification. Since MRI methods can readily separate brain parenchyma into
white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) spaces, depending on the anatomical region or region of
interest (ROI), MRI quantification is typically in the form of volume, surface area, shape, and/or thickness. Diffusion tensor
imaging (DTI) permits the computation of various quantitative metrics, especially sensitive to WM integrity, including the
extraction and assessment of WM tracts. Functional MRI (fMRI) techniques provide physiological metrics that examine matu-
ration through connectivity profiles. Regardless of the MRI method used for image quantification, dynamic changes of the brain
occur throughout the first three decades of life, dominated by GM reductions associated with cellular pruning andWM increases,
reflecting myelination and connectivity. From a neuroimaging perspective, when quantitative metrics show stabilization, this
may be an indication of a neuroimaging-derived “brain age”metric. Future directions and the importance of understanding brain
development and neuroimaging findings in the context of neural networks and their maturation as applied to pediatric neuro-
psychology are discussed.
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The review that follows will be a bit different from traditional
reviews of the developing brain in neuropsychology—it will
be mostly pictorial. A substantial repository of neuroimaging-
based studies1 focused on brain development now exists.
Typically, neuroimaging findings about brain development
are summarized in some graphic form as a standard X-Y plot,
where the abscissa reflects age and the ordinate displays some
type of neuroimaging metric, usually a specific neuroanatom-
ical region or quantitatively derived region of interest (ROI)
measure. As such, a rich resource of graphic and figural infor-
mation about brain development and maturation has been gen-
erated. Accordingly, in graphic form, this review brings some
of this information together that shows quantitative

1 This review assumes familiarity with neuroimaging methods and basic image
analysis procedures. For additional background on the neuroimaging methods
discussed in this review, the reader is referred to the following:Wilde et al., (2012b)

This article is part of the Special Issue: Law,Neuroscience, andDeath as a
Penalty for the Late Adolescent Class; Dr. Robert Leark, Guest Editor.

* Erin D. Bigler

1 Department of Psychology and Neuroscience Center, Brigham
Young University, Provo, UT 84602, USA

2 Department of Neurology, University of Utah, Salt Lake
City, UT 84132, USA

3 Department of Psychiatry, University of Utah, Salt Lake
City, UT 84132, USA

4 Department of Neurology, University of California, Davis,
Sacramento, CA 95616, USA

5 Somerset, USA

https://doi.org/10.1007/s40817-021-00099-6

/ Published online: 25 May 2021

Journal of Pediatric Neuropsychology (2021) 7:27–54

http://crossmark.crossref.org/dialog/?doi=10.1007/s40817-021-00099-6&domain=pdf
http://orcid.org/0000-0002-3031-3919


neuroimaging indices of brain development and maturation,
with particular relevance for pediatric neuropsychology.

Computed tomography (CT), introduced in the early 1970s
(Ambrose & Hounsfield, 1973), was the first non-invasive
neuroimaging method for in vivo brain imaging. However,
CT imaging exposes the individual to radiation, albeit small
amounts, and therefore, it is not a compatible method for lon-
gitudinal neuroimaging of the brain, especially in healthy in-
fants and children. This all changed with the advent of mag-
netic resonance (MR) technologies and the introduction of
MR imaging (MRI) of the brain in the 1980s, as MRI has no
such risks (Ball, 1991). Developmental studies take time, and
consequently, it is not until the end of the twentieth century
and the beginning of the twenty-first century that well-
designed MRI-based neuroimaging investigations focused
on brain development in healthy, age-typical individuals were
first published (see Courchesne et al., 2000; Pfefferbaum
et al., 1994).

Viewing growth plots from neuroimaging investigations is
intuitive, as shown in Fig. 1. In one of the first large-scale
developmental, yet cross-sectional neuroimaging studies,
Courchesne et al. (2000) addressed the relationship between
head size, derived from MRI measured as total intracranial
volume (TICV), and age as depicted in Fig. 1. Without much
discussion or even statistical analysis, these plots show expo-
nential head growth in the first few years of life, which, in
turn, stabilizes in mid-to-late childhood, plateauing thereafter.
These types of plots allow the immediate visualization of
when and where dynamic changes occur over different devel-
opmental stages, when they plateau or change in trajectory.
Indeed, this is the basis for the growth chart in every pediatri-
cian’s office to monitor height, weight, and head circumfer-
ence (HC). Accordingly, what was shown by Courchesne
et al. (2000) and displayed in Fig. 1 was not new, because
these MRI-derived TICV plots perfectly mirrored what was
already known about head size development by plotting HC
by age (Serru et al., 2019). However, what Courchesne et al.
(2000) demonstrated was that the MR image could be

quantified, indicating ground-truth replication of what oc-
curred with direct, physical measurement of HC.

Prior to contemporary neuroimaging, HC was the only
physical measurement to infer brain development. Indeed,
post-mortem measurements of skull size or intracranial
volume accurately estimate brain size (Maxeiner &
Behnke, 2008; Yamada et al., 1999). HC as a proxy mea-
sure of brain development dates back to the beginnings of
pediatrics as a medical discipline (Meredith, 1946). While
a proportionally small head represents a biological neces-
sity for the head to exit the birth canal, head size therefore
needs to be small at birth. To meet this requirement of
smallness, as shown in Fig. 1, head size is ~30% of its
ultimate adult size at birth. However, TICV as a reflection
of head size rapidly changes as shown in Fig. 1, such that
by 1 year, it reaches 70–80% of adult size. While TICV
mirrors skull enlargement, the rapid expansion of TICV
occurs as a secondary process stimulated by brain growth
that drives the increases from total brain volume (TBV). As
shown in Fig. 2, the overall positive correlation between
HC and TBV exceeds .90 (Serru et al., 2019). For devel-
opmental psychology and neuropsychology in monitoring
early brain development, the HC measurement offers some
clinical utility to infer brain growth, especially for high-
risk infants in the first few years of life, like those associ-
ated with prematurity, but as HC quickly levels off, it no
longer provides a useful metric for neuropsychology.
Contemporary neuroimaging methods do because the
brain, not just the skull or size of the head can be imaged,
as will be further explained throughout this review.

This review will not be hypothesis driven or will not even
attempt to test a hypothesis but will merely present, in graphic
form, how neuroimaging can be used to display the dynamic
changes captured with brain imaging metrics over the first three
decades of life. However, there is the assumption that neuroim-
aging demonstrated brain development and maturation will, in
some fashion, parallel behavioral, emotional, and cognitive de-
velopment, which, in many respects, will display similar growth
plots. All psychological, educational, and neuropsychological
assessment measures plot some measure of emotional/cogni-
tive/motor/sensory-perceptual and/or educational ability with
age, as do neuroimaging studies. Accordingly, throughout this
review, these types of growth plots and their intuitive visualiza-
tion will be the basis for the figures presented, with the assump-
tion that highly interrelated, reciprocal relations between brain
and behavior share common roots, paralleling one another, pro-
ducing similar growth plots.

While there is a substantial literature, both clinical and
bench science, on in utero and the first 3 years of brain devel-
opment (Gilmore et al., 2018), this review will only peripher-
ally tap that timeframe. There is a host of neurodevelopmental,
genetic, pregnancy, gestational, birth, and related factors as-
sociated with in utero brain development that will not be part

Fig. 1 Total intracranial volume (TICV) by age. Note the rapid increase
in TICV over the first few years of life, with general plateauing by late-
childhood, mid-adolescence. From Courchesne et al. (2000), used with
permission from the Radiological Society of North America
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of this review. From a neuropsychological perspective, assess-
ments performed from birth to age 3 are truly just develop-
mental measures. However, starting at age 3, the beginning of
what becomes a more standard neuropsychological examina-
tion becomes possible (Baron, 2018; Reynolds & Fletcher-
Janzen, 2009). Accordingly, this review will typically have
age 3 as a lower boundary and will, in turn, concentrate on
neuroimaging-derived brain development from this early
childhood timeframe through the mid-20 years of life, in other
words, the beginning of what is referenced as adulthood.

However, exactly when “adulthood” is attained is debat-
able. The outward signs of physical development in relation to
the head and brain, as illustrated in Fig. 3, are obvious. In fact,
it has been evolutionarily assumed that humans acquire innate

visual perceptual abilities to estimate age of another person,
merely by looking at that size of an individual, including the
proportional differences between head size, physical height,
and body morphology (Coma et al., 2014; Murphy, 2011).
This perception of outward body size and appearance is part
of the social brain network and its development (Freiwald,
2020; Schurz et al., 2020) and has also attracted machine
learning, with digital face recognition approaches for estimat-
ing age purely from face recognition (Fu et al., 2010).
Outward appearance as a sign of maturation, as shown in
Fig. 3, depicts the disproportionate size of the head to the body
as a reflection of age, where head size actually stabilizes rel-
atively early. But, outward head size could not, alone be an
anthropomorphic indicator of adulthood.

Fig. 2 Correlation between
automatically estimated brain
volume (ml) and head circumfer-
ence (cm). From Serru et al.
(2019), with permission from
Elsevier

Fig. 3 Anthropometric
differences between children and
adults. The image on the left
demonstrates the decreasing
head-to-body size ratio from birth
to adulthood, adapted from
Lindsey et al. (2019) and Pinto
et al. (2012)
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What metric should be used to define adulthood. Different
measures include all sorts of developmental indexes, includ-
ing physical size, as depicted in Fig. 3; legal definitions (right
to vote, drive, military service, etc.); psychometric measures
that assess acquisition and progression of cognitive skills; and
physiological and biological measures (bone density, growth
plates, reaction times, motor skill level, etc.), but what about
brain maturation and adulthood? When does the developing
brain reach adulthood? Can it be inferred or measured with
neuroimaging technology? It may be from a neuroimaging
perspective that the visualization of an asymptotic plateau that
remains stable in the developing individual is the brain’s in-
dicator of adulthood. As such, developmental and lifespan
changes associated with brain volumetrics have become the
basis for calculating “brain age” as an index of maturity
(Anaturk et al., 2020).

Pre-dating neuroimaging and methods for the direct visu-
alization of the brain, all types of inferences about “normal”
brain growth and development were all post-mortem based on
individuals who purportedly had normal development but
died from non-neurological reasons. Many of these post-
mortem analyses, however, also were performed on develop-
ing brains exposed to some pathological condition or had
some type of developmental error (Ernhart, 1991; Eskenazi
et al., 1988). Some of these studies not only reported on the
overall brain weight but also performed histological analyses
like cell counts and size, neuronal configuration, and density
along with myelin development, but there were no methods to
consistently exam ROI size differences, without time-con-
suming, meticulous dissection and a post-mortem specimen
(see Blinkov & Glezer, 1968).

MRI quantification and developmental studies did not oc-
cur immediately after the introduction of this technology. In
the beginning, MR methods were limited by low magnetic
field strength and lengthy acquisition times, again, like CT
not compatible with imaging children, but for different rea-
sons. While MRI did not expose the child to any risk, having
to lay as still as possible for minutes at a time without move-
ment was and remains a challenge for doing MR-based neu-
roimaging studies. Movement distortion makes an MR image
unquantifiable. Even more problematic in the beginning of
modern neuroimaging was the absence of any automated
methods for image quantification, and it all had to be done
by hand. Hand tracing ROIs was extremely accurate and con-
sidered to be the “gold standard” in the beginning of neuro-
imaging quantification but incredibly time consuming. To
hand trace a few ROIs along with the entire surface of the
brain and ventricular system for TBV calculation and other
key ROIs, doing it reliably between two raters could take 25+
h per case. Fortunately, with the transition from the twentieth
to the twenty-first century, there were rapid advances in image
acquisition and analysis techniques (see Bigler, 2017). Still,
the early seminal contributions by Courchesne et al. (2000)

and Pfefferbaum et al. (1994), as shown in Fig. 4, began the
process of plotting cortical as well as whole-brain gray matter
(GM) and white matter (WM) volumetrics from birth on,
based solely on quantitative measures extracted from the
MR scan image of living individuals. These plots, as shown
in Fig. 4, were the first quantitative, in vivo investigations, in
healthy individuals over the lifespan, and all computations
were done using operator-controlled methods. Since MRI,
unlike CT, provides a clearer and more distinct delineation
between WM, GM, and cerebrospinal fluid (CSF) boundaries
(see coronal MRI inset in Fig. 4), the unique contributions of
these tissue and fluid types could also be quantified. What
emerged from these analyses was that while TBV/TICV sta-
bilization occurs early, WM, GM, and CSF volumetrics were
far more dynamic and ever changing through the first three
decades of life. Overall, GM peaked early in childhood and
then dropped off but continued to change even during tradi-
tional timeframes of adolescence and early adulthood. In con-
trast, WM volume accelerated through early childhood, con-
tinuing to increase in volume without plateauing until individ-
uals were in their mid-20s to 30s. MRI-derived CSF volumet-
rics (not shown) were more stable, once mid-childhood was
reached.

The GM and WM distinction and their dynamic changes
are particularly important because they represent different as-
pects of neuron structure. Axons define the neural circuitry of
the brain (Holtmaat & Svoboda, 2009), where the majority are
myelinated. This unique biological fact gives rise to its
“white” appearance and label. WM neuronal circuitry con-
nects with other neurons via dendrites and synapses that form
the GM. These distinctions permit inferences about WM to be
used in discussions about brain connectivity and GM infer-
ences about neuronal cell body, metabolism, and synaptic
integrity.

Based on the aforementioned post-mortem histologic stud-
ies of the child’s brain that predated modern neuroimaging, it
had become well established that GM cellular pruning pro-
cesses resulted in reduced GM cortical thickness and, con-
comitantly, that myelination increased with age (Davison &
Dobbing, 1966; Herschkowitz & Rossi, 1971). Now, as dem-
onstrated by the studies of Pfefferbaum et al. (1994) and
Courchesne et al. (2000), in vivo neuroimaging findings of
reduced GM volume during development could be used as
proxy for cellular pruning and WM volume increase as a
proxy index for myelination. While head size, TICV, and
TBV all reach a similar asymptote, within the brain itself,
dynamic WM and GM growth patterns were occurring, all
measurable via quantitative neuroimaging and viewable.

Myelin has high water content (Oishi et al., 2013; Pujol
et al., 2006). Since the basis for MR technology is the preces-
sion of hydrogenmolecules detected by a radiofrequency (RF)
wave, referred to as the RF signal, different MR signal char-
acteristics are especially sensitive to myelin. In fact, because
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of the minimal myelination at birth, there is also minimal
differentiation of the MR signal between the WM and GM
in the first few months of life (Oishi et al., 2013).
Accordingly, by assessing subtle changes in the RF signal
starting from birth, when there is minimal WM signal intensi-
ty, myelin development can be regionally plotted as it emerges
early in life (see Fig. 5). As the WM MR signal changes,
depicted as expanding white in Fig. 5, it relates directly to
the degree of myelination as well as where myelination is
occurring. Pujol et al. (2006) relate these WM changes direct-
ly to language and motor skill development, where the growth
plots in Fig. 5 are separated by language and sensorimotor
areas.

What is visually presented in Fig. 5 is the progression of
WM myelination plotted on a sagittal MR image of the in-
fant brain, from a newborn through to a toddler of 3 years of
age. Plotting the changes of this MRI-derived myelination
coefficient shows how motor and somatosensory regions
(see upper panels) of the posterior frontal lobe and anterior
parietal respectively come online as the first to show in-
creased myelination after birth, followed by the superior
temporal gyrus (lower panels), which houses auditory cor-
tex. These areas of increased myelination map distinctly to
the primary motor, somatosensory, and auditory processing
networks in the developing brain. What emerge next are the
connectiveWM tracts (arcuate fasciculus) from the auditory
cortex in the temporal lobe with motor control centers in the
frontal lobe for speech production. Not shown in this par-
ticular sagittal plane are the visual cortex and the optic
tracts, which also develop rapidly, supporting the visual
sensory system as well.

Image Quantification
and Neuroimaging-Derived “Brain Age”

As shown in the top left of Fig. 6 (also, see inset in Fig. 4),
there are distinct WM, GM, and CSF boundaries in the coro-
nal T1-weighted (W) MRI. If the meninges and skull are
stripped away (lower left) and the image converted to conform
to a uniform space (also, lower left image), GM, WM, and
CSF can be isolated (middle, upper image). Furthermore, be-
cause typical neuroanatomy follows a generally similar sche-
matic, using fiduciary and critical landmark identification
methods, GM, WM, and CSF regions can be further
parcellated and classified (bottom image), using automated
algorithms. Isolating the cortical GM mantel (upper right),
cortical volume and thickness can be computed as well as
gyrification and surface area (lower right). The MR image is
an average of the different WM, GM, and CSF signal charac-
teristics per the slice thickness of the image. Accordingly, by
knowing the slice thickness and number of slices, an assort-
ment of quantitative metrics can be derived from the segment-
ed and classified image.

All of the developmental plots shown up to this point have
reflected only global changes in overall brain development.
However, with what has now been shown in Fig. 6, based on
the segmentation and classification methods of quantitative
neuroimaging, the component parts that make up the brain
can be quantified as well and their developmental trajectories
plotted. Since different regions, cortically or subcortically,
have different roles in neural network systems that regulate
brain function, these ROIs should also be examined by growth
plot analyses and may therefore have different growth patterns

Fig. 4 Developmental changes in graymatter (GM, left) and white matter
(WM, right) from Courchesne et al. (2000, top) and Pfefferbaum et al.
(1994, bottom). While the investigation of Pfefferbaum et al. (1994) only
examined brain development out to 30 years of age, not the robust

similarities between these two completely separate investigations show
early peaking of GM development followed by the pruning-mediated
decrease, all-the-while prominent increases in WM, reflecting the
myelination taking place
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related to function. Since normal brain development is expe-
rience dependent which also relates to neural system develop-
ment, how can different neuroanatomical regions and neural
systems be parsed out and do these cortical and subcortical
ROIs further assist in calculating “brain-age” metrics (Franke
& Gaser, 2019; Jiang et al., 2019)? With the classified image
method shown in Fig. 6, subcortical analyses will be covered
toward the end of this section, but first some additional com-
mentary about cortical GM developmental changes.

Figure 7, from Walhovd et al. (2017), shows how cortical
thickness and cortical surface area plots relate to brain matu-
ration. While these curves (top image) are similar to what is
shown in Fig. 4, this method can also be used to assess the
annual rate of change and then plotted on a surface rendering
of the brain. Using this approach not only can the whole-brain
growth curve be visualized; regional differences can be plot-
ted in what is referred to as a colorized “heat map” (bottom
image). Note that the heat map (warm colors) shows the
greatest changes in cortical thickness and surface area in the
first 10 years of life. Accordingly, as reflected in these growth
plots shown in Fig. 7, the dynamic changes that occur in the
first decade of life, at the cortical level, slow down thereafter
but continue into the 20s.

Vidal-Pineiro et al. (2020) extend the cortical thickness
plots out over the entire lifespan, by integrating numerous
studies, examined by different age groups, combining them

into the same diagram as shown in Fig. 8.What is important to
emphasize in this plot is what would be expected; the most
dynamic changes occur within the first three decades of life,
followed by a steady decrease in cortical thickness thereafter.

Since it was first shown by Willerman et al. (1991) that
intellectual ability positively correlated with TBV, how best
to display these types of relations, especially in light of what
has been shown so far in terms of cortical GM pruning? At the
time of assessment, from a neurobehavioral or neurocognitive
perspective, the assumption is that testing assesses the sum
total of brain development up to that point of evaluation. As
such, neuropsychological variables should also map on to
neuroimaging indicators of brain maturation. For example,
all intellectual, ability-based and neuropsychological tests
make age adjustments. These age corrections assume that in-
creased age reflects age-mediated increased cognitive ability
or emotional/behavioral control, which, in turn, reflects mat-
urational brain development. While neurocognitive and neu-
robehavioral “corrections” for age mirror brain development,
to date no standardized neurobehavioral or neurocognitive
measure has attempted to integrate a neuroimaging-based
brain age coefficient. An example of why this should be the
next step in merging brain developmental metrics with neuro-
psychological assessment and other neurobehavioral
measures is the demonstration by Schmitt et al. (2019) in
Fig. 9 that shows the dynamic associations between cortical

Fig. 5 (Upper left) Plot of age-related increase in relative content of
myelinated white matter for the 100 studied children by Pujol et al.
(2006). Logarithmic curves for the sensorimotor region (blue), for the
temporal region (green) and for the frontal region (red) showing the

volume from myelinated and from non-myelinated white matter (WM).
From Pujol et al. (2006), with permission from the American Academy of
Neurology and Wolters Kluwer
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thickness and full-scale intellectual ability from childhood in-
to adolescence. As shown in Fig. 9, widespread changes in
cortical thickness and surface area relate to intellectual devel-
opment as well. Note regional by age differences. Additional
commentary about this figure will be discussed in the section
on brain networks and the conclusions to this review.

Another takeaway from Fig. 9 applies to the child with an
acquired brain injury. Whatever stage of development the
brain is in when injury, infection, or some type of acquired
pathology strikes will also influence how brain cognitive-

intellectual development and relations proceed thereafter
within a neurodevelopmental context toward adulthood, in
the now damaged brain (Ewing-Cobbs et al., 2016; Ryan
et al., 2020; Wilde et al., 2020). Furthermore, the staging of
brain development during childhood and adolescence appears
to be critical in terms of any number of neuropsychiatric dis-
orders. As such, understanding brain development in relation
to neurocognitive and neurobehavioral development and their
intricate relationships with the onset and vulnerability to or
emergence of certain neuropsychiatric disorders will likely

Fig. 6 The picture element, or pixel, intensity in MR imaging reflects
tissue type or presence of fluid and/or air in the T1-W sequence shown.
Pixel intensity is displayed on a gray scale, where the contrast can be
readily determined between theWMandGM aswell as CSF-filled spaces
as shown on the left, top and bottom coronal images.WM is white, GM is
light gray, and CSF is black. Isolating these tissue types, be segmenting
them apart, allows the computation of ROI volume for overall WM, GM,
and/or CSF volumes, which is shown in the upper middle image. The
bottom left image depicts the coronal image with the skull and meninges

removed. This process isolates just the brain, which is then placed within
a uniform space. Sophisticated algorithms classify the segmented paren-
chyma into identifiable anatomical regions or ROIs, referred to as image
classification (bottom middle image). Classification schemas following
traditional structural identification, such as subcortical ROIs or cortically,
cataloging the ROI by Brodmann areas. As illustrated on the right, corti-
cal volume along with the thickness of the cortical ribbon and cortical
surface area can be computed

33J Pediatr Neuropsychol (2021) 7:27–54



Fig. 7 Developmental trajectories of cortical thickness and area. Upper
panel: Comparison of the developmental trajectories reported in
Raznahan et al. (2011) to some to data from the Center for Lifespan
Changes in Brain and Cognition (LCBC) program, University of Oslo,
illustrates some discrepancies across studies. While the surface area
shows similar inverse U-shaped trajectories, with larger absolute area
for boys (dotted and blue lines) than for girls (solid and red lines), thick-
ness results differ markedly between studies. In Raznahan et al. (2011),
thickness increases until approximately 8.5 years, and boys have thicker
cortex than girls throughout the age range. In the LCBC data, thickness

shows a monotonic decrease from 4 years, with comparable absolute
thickness estimates for boys and girls. Of note, thickness and area are
more different in terms of trajectory and sex effects in the LCBC data than
in Raznahan et al. (2011). Error bars for the LCBC curves represent 95%
confidence interval. Lower panel: Vertex-wise annualized rates of change
in cortical thickness and surface area computed in 778 subjects aged 3–
20 years from the PING study. As can be seen, cortical thickness de-
creases monotonically within this age range, while area shows an inverted
U-shaped pattern of increase followed by a decrease. FromWalhovd et al.
(2017), used with permission from Oxford University Press

Fig. 8 Trajectories of weighted-average cortical thickness. The upper and
lower plots exhibit the trajectories of a cortical thickness and b cortical
thinning during the lifespan, respectively. Cortical thickness fitting (black
line) overlies a spaghetti plot that displays each observation (dots), par-
ticipant (thin lines), and scanner (color). All estimates are adjusted for sex
and scanner (scanner platform is displayed on the right). The y-axis units

represent mm andΔmm/year for the thickness and thinning plots, respec-
tively. The dotted red line in the cortical thinning graph represents 0
change, and negative and positive values represent thinning and thicken-
ing, respectively. From Vidal-Pineiro et al. (2020), with permission from
the Nature Publishing Group
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yield greater diagnostic specificity and potential therapeutic
avenues for treatment, if more can be understood about
neuroimaging-derived brain-aging dynamics, behavior, and
cognition.

Quantitative Neuroimaging
and Microstructure Inference

As already alluded to, MR images approximate the visual
appearance of the living brain, or what is referred to as the
macro-structure, something akin to interrogating brain paren-
chyma at autopsy. However, understanding even more about
what makes up the image allows both the researcher and cli-
nician the ability to make inferences about the underlying
micro-structure of the brain. The illustration from Novikov
et al. (2019) presented in Fig. 10 demonstrates the point that
at the most elemental level, all aspects of living, viable tissue
begin with molecules. How those molecules assemble and
organize to create amino acids that form the building blocks
for tissue, blood, and CSF, represents the fundamentals of
brain development. What is shown at the molecular level
can only be assessed with nanometer (nm) precision (a

billionth of a meter; left side of Fig. 10), such as with an
electron microscope. In contrast, cell bodies can be viewed
with a microscope with micron (μm)-level precision (mil-
lionth of a meter; middle image, Fig. 9), but still below what
contemporary in vivo neuroimaging can achieve. Most com-
monly,MR-based neuroimaging views tissue at themillimeter
(mm) level of resolution, as highlighted in Fig. 10 (right
image).

What does mm precision imply for MR metrics assessing
GM in studying brain development? It has been estimated that
the human brain is comprised of ~80–100 billion neurons
(Herculano-Houzel, 2009). Insel and Landis (2013) estimate
that within a single, 1-mm3 MRI voxel, it contains “… 80,000
neurons and 4.5 million synapses” (p. 565). Accordingly, at
the macroscopic MRI level, even for a small ROI of just a few
cubic millimeters, this would reflect hundreds of thousands to
millions of neurons. Since glial cells outnumber neurons, what
is represented within a single voxel, just from a cellular count,
would be even higher (Herculano-Houzel, 2009).

Figure 11, fromVeraart et al. (2020), depicts an even better
portrayal of this principle, using a rat brain where anMRI scan
was obtained in the sagittal plane, with the distinct appearance
of an entirely normally appearing corpus callosum, as

Fig. 9 Dynamic changes between
cortical thickness and Full Scale
IQ over childhood and
adolescence. Maximum
likelihood estimates of the
phenotypic correlation (rP),
genetic correlations (rG), and the
genetic contribution to covariance
(pcorG) shown for ages 6–17.
From Schmitt et al. (2019) where
changes with time can be viewed
dynamically in the
Supplementary Movies.
Additional views are also provid-
ed in Figure S1 at the publication
site. Reproduced with permission
from Oxford University Press
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highlighted in the middle image. However, these investigators
also examined the brain histologically (lower right). Note, to
actually examine the cellular makeup of the corpus callosum,
histological analysis at the micron level is required. What this
means for neuroimaging and pediatric neuropsychology infer-
ences is that MRI metrics derived from healthy, age-typical
individuals form a normative sample, where the average for
GM measurements is a proxy for GM integrity that includes
cell count, organization, and density, with WM quantifica-
tions reflecting myelination, myelin/glial cell count, and com-
pactness of WM tracts (Bigler, 2017). Accordingly, in refer-
ence to normative standards for size, volume, thickness,
shape, or basic RF signal findings (i.e., water diffusion coef-
ficients), the MR image provides a number of approaches to
infer normality or deviation therefrom in the microstructure of
brain development. As already implied, this also means that
reliable yet subtle differences or changes in MR metrics may
signify important neurobiological and neuropathological find-
ings in brain development.

MR technologies provide multiple methods to query and
infer what might be occurring at the microstructure level. Up
to this point, the MR image sequences for typical volumetric
analyses, and the ones shown so far in this review, have been
based on T1-W, T2-W, or some combination of these se-
quences. The MR sequence label has to do with the timing
and duration of when the strong magnetic field used to gener-
ate the image is pulsed. T1-W sequences are often referred to
as the “anatomical” sequence and, regularly, the basis for
many types of quantitative analyses. T2-W sequences provide
more distinct visualization of CSF and certain types of
intraparenchymal pathologies. Because of its sensitivity to
water, combined with the fact that myelin has a high water
content, T2-W sequences are particularly useful in the exam-
ination of WM. Figure 12, by Silk et al. (2016), displays and
compares the image appearance of the most common structur-
al MRI sequences, which all have different sensitivities in
detecting diverse aspects of neuroanatomy and neuropatholo-
gy. Also shown in Fig. 12 is functional MRI (fMRI). In

Fig. 10 The mesoscopic scale in brain MRI, as an intermediate scale between the elementary (molecular) and the macroscopic (resolution) from
Novikov et al. (2019), reproduced with permission from Wiley

Fig. 11 For two brain samples,
MR scanning (a, color encoded
FAmap) was followed by low (b)
and high (c) resolution confocal
microscopy with staining
for neurofilaments to identify the
axons. The low-resolution image
was used to position various
ROIs, whereas the axon caliber
distributions were extracted from
the high-resolution image of the
corresponding ROIs. The long
axes of fitted ellipsoids served as
proxies for the respective axon
diameters (d). From Veraart et al.
(2020) with permission
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Fig. 12, the T1-W sequence, as already indicated, is often used
for general ROI quantification but the principles discussed
next in terms of tissue thresholding, segmentation, and classi-
fication are similar regardless of which sequence is used.
Because of their sensitivity in detecting pathology, T2-
weighted MR sequences are often used to isolate abnormali-
ties and compute various quantitative metrics, such as lesion
burden. Susceptibility-weighted imaging (SWI) sequences are
depicted in Fig. 12c, which readily detect different aspects of
the vasculature, as well as hemorrhage, including hemosiderin
as a residual by-product from prior hemorrhage. Figure 12d–f
represents diffusion tensor imaging (DTI) techniques, which
will be further explained in a subsequent section. Figure 12g
represents the activation patterns associated with fMRI-based
methods for detecting the blood-oxygen-level-dependent
(BOLD) MR signal. Because of differences in the magnetic
properties of oxygenated versus de-oxygenated blood, those
differences echo where the greatest activation has occurred.
Versions of this fMRI methodology can also assess cerebral
perfusion (van Osch et al., 2018). Finally, all of these methods
can be integrated to study brain networks, which will be more
fully discussed at the end of this review and/or integrated into
what is referred to as a multi-modality quantification of brain
metrics to improve detection of differences in normal devel-
opment as well as disease and injury (see Bigler et al., 2016;

Wilde et al., 2020). However, for this review, the focus will
remain mostly on single-modality MR imaging findings relat-
ed to brain development.

Three-Dimensional Image Quantification
and Display

Once image classification can be achieved (see Fig. 6), all
aspects of coarse brain structure can be placed into three-
dimensional (3-D) space, as shown in Fig. 13, which can be
achieved with any image sequence, although what is shown in
Fig. 13 is T1-W based. As noted in Fig. 6, gyral patterns can
be quantified, as a gyrification index, which provides a surface
area indicator, readily observable in the upper left image of
Fig. 13, which also has each gyrus separately identified. The
cortical GM mantel can be removed, exposing the underling
cortical-level WM (top, left middle), which can be separately
identified and quantified. WM connectivity can be assessed
with DTI, where the streamline projections in a lateral and
posterior view are shown in Fig. 13 (right top and bottom).
The origin/terminus of WM streamlines can be associated
with any ROI shown in the structural 3-D images, allowing
a direct assessment of the pathway integrity between ROIs.
What the 3-D imaging portrays, in Fig. 13, is how the

Fig. 12 Examples of the different MR sequences to evaluate structural
and functional development. a T1-weighted. b T2-weighted. c
Quantitative susceptibility mapping. dDiffusion-weighted imaging: frac-
tional anisotropy (FA) map. e Diffusion-weighted imaging: estimation of

the fiber orientation distribution. f Diffusion-weighted imaging: whole-
brain tractography. g Resting-state fMRI showing default mode network.
h Connectivity network for structural and function connectivity from Silk
et al. (2016), used with permission
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individual brain can be viewed from any perspective, with
shape and morphology quantified including subcortical struc-
tures (middle, top, and bottom right).

Since overall brain volume is but representative of its con-
stituent parts, robust positive correlations between the size of a
subcortical region and overall brain size is the general rule;
however, dynamic subcortical growth as well as changes over
time, which may also include pruning, apply to subcortical
GM structures as well. For example, the plots in Fig. 14, from
Foulkes and Blakemore (2018), depict different developmen-
tal changes that accompany subcortical ROIs. While some
subcortical regions, as shown in Fig. 14, reflected more of a
pruning decrease in volume with increasing age, reminiscent
of what was observed with whole-brain GM as depicted in
Fig. 4, the pallidum, thalamus, amygdala, and hippocampus
did not. How these developmental differences relate to func-
tional outcome during these developmental periods remains to
be seen, but speculation would center on the complexities of
social maturation that would be particularly dependent on in-
creased regulatory roles involving thalamic integration and the
social-emotional-cognitive regulation needed during the
prolonged adolescent to adulthood transition. The mastery of
more end-stage cognitive development and emotional control
to navigate adulthood and the rest of the lifespan may be
highly dependent on when cellular maturation occurs, espe-
cially subcortically. Also, the hippocampus is a region where
neurogenesis occurs (Seki, 2020), which may also involve the
amygdala and thalamus (Jurkowski et al. , 2020).
Neurogenesis and its interaction with environment may play

a role in growth trajectories of some of these structures (Dow-
Edwards et al., 2019). More will be said about the hippocam-
pus and amygdala later.

DTI, Imaging of White Matter Tracts and Their
Quantification

DTI was introduced in the discussion of Figs. 12 and 13. The
MR signal is based on the precession characteristics of hydro-
gen molecules and the physics of water diffusion. As such, the
difference in tissue types of brain parenchyma is all about
intracellular and extracellular water content within and be-
tween WM, GM, and CSF. With DTI technology, there is a
host of what is referred to as diffusion metrics. Figure 15
provides some basic parameters of what is being measured
with two DTI metrics. Assume in Fig. 15 that a drop of water
strikes a surface where there are no constraints in the direction
that the water disperses. For example, a water droplet on an
absorbent piece of paper generates a perfect sphere of disper-
sion and absorption, as water goes in every direction. This is
referred to as isotropic diffusion. Restricted diffusion is aniso-
tropic. A common DTI metric to measure diffusion is referred
to as fractional anisotropy (FA). The FA metric ranges from
0.0 (isotropic) to completely restricted as 1.0 (complete an-
isotropy), shown in Fig. 15. However, on the right-hand side
of Fig. 15, the perpendicular boundaries are representative of
cellular membranes, like myelin coating, that constrain the
direction of water dispersion. Since neural tissue is highly

Fig. 13 Three-dimensional rendering of the cortical surface on the left.
Each color reflects a difference gyrus. Middle, left depicts the cortical
WM, with the GM mantel removed, to depict the cortical WM surface,
also colorized according to gyral association. Middle, right depicts

subcortical structures where red = amygdala, yellow = Hippocampus,
brown = thalamus, purple = putamen, blue (top) = ventricle, and aqua-
marine (top) = caudate. DTI streamlines are shown on the right
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concentrated with water, being constrained by cellular mem-
branes means that the water molecules will no longer disperse
in a non-directional way, but rather in a direction perpendicu-
lar within a constraining membrane, where intracellular and
extracellular water dispersion is different. In WM, the axon
has two factors that constrain intracellular water: the
axolemma (axon membrane) and the oligodendrocyte mem-
brane associated with the myelin axonal coating. So, within
WM, the direction of water diffusion is used to infer the ori-
entation of axons as they aggregate together in tracts,
projecting from point A to B. As indicated in Fig. 15, the
colors in DTI are meaningful. Green shows the anterior-
posterior orientation of WM tracts, and the blue reflects

vertically oriented tracts with the warm colors showing the
left-right, side-to-side projections. If these membranes are
damaged or axon integrity degrades, then water dispersion
goes back to greater randomness, as shown in the lower mid-
dle image. This is also shown in the DTI color map on the left.
This axial DTI image is at the level of the temporal lobe where
the arrow points to a very damaged occipitotemporal fascicu-
lus as the result of a traumatic brain injury, where the DTI
color map exhibits just randomwater diffusion. As depicted in
the cartoon, when cellular membranes have broken down,
water diffuses in all directions. In contrast, look at the undam-
aged occipitotemporal fasciculus on the right of the image,
exhibiting a distinctly bright green colorization of a normally

Fig. 14 Developmental trajectories for total gray matter volume: ages
7.0–23.3 years old. Mean volume in cm3 (y-axis) by age in years (x-
axis) is shown for males (n = 94, blue) and females (n = 53, red).

Shading around the regression lines represents the 95% confidence
interval of the intercept. From Foulkes and Blakemore (2018), with per-
mission from Springer Nature
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appearingWM tract. This indicates well-organizedWM tracts
all oriented in the anterior-posterior plane, which is their nor-
mal configuration at this level of the temporal lobe.

What is particularly important about DTI is that through a
process referred to as tractography, aggregatedWM tracks can
be extracted from the scan image as depicted in Figs. 12 and
13 and in Fig. 16. The left image in Fig. 16 is a post-mortem,
dorsal view of the brain where the top of the cerebral cortex
has been meticulously dissected away displaying the aggre-
gated side-to-side WM tracts projecting across midline,

forming the corpus callosum. To the right is DTI tractography
at the same level, but in a living human. Note the general
agreement of the DTI image with that of the post-mortem,
depicting the tracts across the corpus callosum but also includ-
ing visualization of U-fibers at the cortical level. Also impor-
tant is that there are numerous methods for DTI quantification
of tracts as well as WM as indices of WM integrity (i.e., FA;
see Oishi et al., 2013).

This technology permits not only showing all of the aggre-
gated WM tracts in the brain, as presented in Figs. 13 and 16,

Fig. 15 Schematic depicting the principles of water diffusion, fractional
anisotropy (FA), apparent diffusion coefficient (ADC), and diffusion
tensor imaging (DTI). When a water droplet diffuses when
unconstrained in any way, top middle image, equal water dispersion
occurs in all directions. However, if water is constrained, as in the
upper right image, the direction of dispersion is restricted. In DTI, the
directionality of water diffusion can be used to infer directionality ofWM

tracts, as shown in the DTI color map in the lower left. Green reflects
orientation in the anterior-posterior direction, blue reflects vertical orien-
tation, and warm, orange-to-red colors reflect orientation in a lateral di-
rection, as depicted in the lower right of the color map. However, in the
presence of damage or degraded WM integrity, diffusion returns to ran-
dom (lower middle schematic). For more details, see Hayes et al. (2016)

Fig. 16 (Left) Post-mortem dis-
section, dorsal view exposing ag-
gregated fiber tracts coursing
across the corpus callosum along
with U-fibers between cortical
gyri. From Gluhbegovic and
Williams (1980). (Right) Dorsal
DTI view of WM tract stream-
lines, showing how close the
conform to the post-mortem ana-
tomic image. Color scheme given
in Fig. 15
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but isolated as well as aggregated tracts (fasciculi) or specific
ROIs can be identified and examined, as shown in Fig. 17
from Assaf et al. (2019).

This, in turn, also means that developmentally, WM tracts
can be subjected to analyses at different ages, providing a
more direct method for examining myelination-mediated de-
velopmental changes that reflect brain connectivity. When
such methods are applied to the developing brain, familiar
WM growth plots emerge from viewing DTI changes associ-
ated with development. For example, Tamnes et al. (2018)
examined DTI metrics from childhood through age 32 as
shown in Fig. 18.

The growth curves presented in Fig. 18 show that
different trajectories exist within each tract, where FA
may change or not at different stages of development.
Close inspection of the individual plot lines in Fig. 18
shows interesting individual differences across regions,
where there are region-specific fluctuations in FA.
Tamnes et al. (2018) also show in Fig. 18 that after
peak development, reductions in FA may occur. Note
that some FA peaks in development or stability do not
occur until after 20 years of age. The importance of

these WM changes is that they do relate to cognition
and behavior as shown in the neurodevelopmental WM
DTI study by Krogsrud et al. (2018) that examined DTI
metrics in relation to verbal and visuospatial working
memory. Figure 19 shows why these developmental
changes are critically important in understanding cogni-
tive development. Age-mediated improvements in basic
working memory (top, Fig. 19) are graphically demon-
strated to relate to increased FA (bottom, Fig. 19), pre-
sumed to reflect increased myelination and WM integri-
ty, which facilitates neural connectivity and speed of
processing.

Another way of viewing these changes is through plots that
depict the percent change in DTI metrics, as presented in
Fig. 20 (see Geeraert et al., 2019; Lebel et al., 2019; Lebel
& Deoni, 2018; Mah et al., 2017). The percent change plots in
Fig. 20, from Lebel et al. (2019), demonstrate that these di-
verse tracts respond differentially to age and development. As
will be discussed in the next section, these developmental
factors become meaningful in understanding the clinical and
applied significance for what myelin changes mean for cogni-
tion and behavior.

Fig. 17 Summary of some of the major DTI-derived tracts that can be extracted from a MR scan. From Assaf et al. (2019), used with permission from
Wiley
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Functional Connectivity Reflective of Brain
Maturity

The increases in WM volume in the healthy, age-typical
individual, as inferred from the above discussion, reflect
both myelination and increased functional connectivity
throughout the brain (Bells et al., 2019; Haber et al.,

2020). There is a variety of functional neuroimaging-
based connectivity metrics that can be applied, one of
which uses the fMRI signal as described in Fig. 12. At
rest, brain regions that have similar and synchronous
BOLD activity are likely connected (Le et al., 2020).
This is referred to as resting-state (rs), functional connec-
tivity (fc) MRI or rs-fcMRI mapping (Dosenbach et al.,

Fig. 18 Longitudinal age-related changes of fractional anisotropy (FA) in
healthy individuals aged 5–32 years. Spaghetti plots with the best fitting
models and bar graphs depicting the percentage of subjects whose FA
increased (green), decreased (red), or did not change (blue) in six age

groupings are shown for different WM fibers, derived using a determin-
istic tractography method from Tamnes et al. (2018) and reproduced with
permission from Elsevier
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2010). In the developing brain, as networks become
established, WM connectivity is enhanced which can be
inferred from the coherence of rs-fcMRI signals.
Accordingly, measuring network complexity over devel-
opmental periods of time represents another approach re-
lated to brain maturation, myelination, and connectivity.
Returning to Fig. 16 and the dorsal view showing the
side-to-side homotopic visualization of aggregate WM
tracts that project to their homologue within each cortical
area, it becomes straightforward to understand that these
brain regions are also connected. This, in turn, means that
for regions connected when at rest, they should display
similar levels of brain activation (i.e., BOLD signal), re-
corded in rs-fcMRI pattern activation, where increased
connectivity levels likely occur in relation to age and
maturation. This is reflected in the study by Dosenbach
et al. (2010) and displayed in Fig. 21 (see also Becht &
Mills, 2020). While the plots in Fig. 21 are similar to the
structural imaging of WM growth, importantly, these
fMRI-based functional connectivity indicators also speci-
fy that WM maturation is similarly expressed in physio-
logical changes.

In the plots shown in Fig. 22, Somerville (2016) argues that
by assessing when asymptote levels are achieved across var-
ious neuroimaging metrics including functional connectivity,
as described above, this point of stabilization likely heralds a
range wherein maturity is reached. However, as shown in the
plots from Somerville (2016) as well as throughout this

review, there are major regional and individual differences
that likely point to a varied maturation rate related to structural
and functional brain development.

Sex Differences

In many of the studies reviewed so far, sex differences have to
be statistically controlled for, so group data could be present-
ed. Becht and Mills (2020) review methods and findings that
examine individual differences in brain development, that
start first with differences between males and females. Head
size does relate to body size, and from the perspective of body
size, on average, males have larger bodies than females. This
also means they have larger absolute head/brain size. As such,
this gets reflected in different volumes which are demonstrat-
ed in Fig. 23. In this illustration, the plot represents the reduc-
tion in cortical gray matter volume of the prefrontal cortex
with similar trajectory slopes regardless of sex, although the
absolute values are less in females. Figure 14 shows that these
sex difference–mediated effects occur throughout all subcor-
tical areas.

In the largest lifespan study to examine sex differences to
date, Wierenga et al. (2020), as part of the Enhancing Neuro-
Imaging Genetics throughMeta-Analysis (ENIGMA) interna-
tional effort to combine neuroimaging datasets, studied
16,683 healthy individuals 1–90 years old, where 47% were
female. The following was observed: “ … greater male than

Fig. 19 (Top) Spatial Span Backward and Digit Span Backward scores
with age. Spaghetti plots of individual participant change in Spatial Span
Backward and Digit Span Backward scores with age (years). Females are
plotted in red and males in blue. For each measure, an assumption-free
general additive mixed model as a function of age was fitted to accurately
describe group-level changes across the age range. From Krogsrud et al.
(2018), used with permission (https://doi.org/10.1371/journal.pone.
0195540.g001). (Bottom) FA change in visuospatial working memory.
Scatterplots showing linear relationships between change in FA and
change in visuospatial working memory. The plots show FA in the

inferior fronto-occipital fasciculus (IFOF, yellow) and forceps major
(FMaj, red), plotted as z-transform change values. For Spatial Span
Backward scores, age, sex, and interval are regressed out, and for each
tract ROI, age, sex, interval, and motion at both time points are regressed
out. The partial correlation (r) between change in FA in specific white
matter tracts and change in Spatial Span Backward scores, controlling for
age, sex, interval, and motion at both time points, is presented in each
plot. From Krogsrud et al. (2018), used with permission (https://doi.org/
10.1371/journal.pone.0195540.g002)
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Fig. 19 (continued)
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female between-subject variance for all subcortical volumetric
measures, all cortical surface area measures, and 60% of cor-
tical thickness measures.” This pattern was stable across the
lifespan for 50% of the subcortical structures, 70% of the
regional area measures, and nearly all regions for thickness
(p., currently e-pub). These investigators conclude that “The
findings highlight the importance of individual differences
within the sexes, that may underpin sex-specific vulnerability
to disorders.” Accordingly, all future neuroimaging studies
involving brain development need to more substantially ad-
dress sex differences.

Networks

All of these advanced neuroimaging analyses reviewed above
only become relevant to the field of neuropsychology when
viewed in the context of how they relate to function. Up to this
point, a specific structure or ROI has been plotted over a devel-
opmental trajectory showing change over time. However, every
structure or ROI is only important in its relation to one another
and its participation in neural networks. Accordingly, function,
and what a pediatric neuropsychologist may assess as part of a

neuropsychological examination, is all about connectivity and
how a specific brain structure or ROI connects with other parts
of the brain that results in cognition and behavior. Using a fMRI
approach, Yeo et al. (2014) and Yeo et al. (2011) derived cor-
tical maps of some of the major functional networks based on a
ROI and cortical parcellation method and how these regions
connect during task-specific activities using some of the fMRI
techniques described above. This is presented in Fig. 21.

As shown in Fig. 24, while an oversimplification, as there
are far more networks than the seven presented, for demon-
strable purposes, this does show that all networks involve
multiple brain regions along with the connectivity between
the two hemispheres. While what is shown in Fig. 24 is
MRI based, similar network topologies come from activation
patterns derived from electrophysiological procedures as well
as other functional neuroimaging methods like positron emis-
sion tomography, often integrated with MRI methods for net-
work analysis (Prajapati & Emerson, 2020). Accordingly, the
networks shown in Fig. 24 have been consistently demonstrat-
ed and are considered reasonable approximations of
established neural networks for the domains color coded in
the illustration. Importantly, what is shown in Fig. 24 is only
the cortical representation and activation story, representing

Fig. 20 A Yakovlev-inspired 2 plot showing FA and mean diffusivity
(MD) timing profiles of 10 major white matter tracts. MD is a measure
that reflects total diffusion within a voxel. The end of the horizontal bar
reflects the age at which either FA or MD reaches 90% of its exponential
plateau value from 5 to 30 years of age, as outlined by Lebel et al. (2008).
27 Some tracts level off in the pre-teen years and others in the late teens,
and a few tracts continue developing into the 20s (e.g., the corticospinal

tract, frontal-temporal cingulum, and uncinate fasciculus). The callosal
tracts tend to mature earlier, although the order of maturation differs
depending on whether one is measuring MD or FA. Note also that, in
general, peak maturation of MD is reached at older ages than FA for the
same white matter tract. Hot colors reflect greater proportional FA orMD
changes from 5 years to the plateau. From Lebel et al. (2019), reproduced
with permission from Wiley Publishing
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only a part of the network. Not shown are all of the
subcortical-to-cortical connectivity networks. Accordingly,
when thinking about brain networks, no sensory experience,
with the partial exception of olfaction, does not register in
cortical activation without initial subcortical activation. What

has been covered so far has shown how individual ROIs can
be identified and quantified in terms of their volume, size,
shape, thickness, and/or some other physical metrics and
how WM connectivity can be assessed with DTI and fMRI
techniques. All of these factors have to come together to best
understand network integrity and function and its relationship
with neuropsychological outcome in the developing brain.
Ultimately, it is not about a solitary ROI, but the integration
across the network. Because many of themethods described in
this review have just been refined within the last decade, the
application of these neuroimaging findings to network image
analysis and brain development is just in the earliest stages
(Dow-Edwards et al., 2019; Kast & Levitt, 2019; Thomason,
2020).

As part of the twenty-first-century connectome project (see
https://nrg.wustl.edu/nrg-projects/hcp/), a variety of elegant
methods has evolved using advanced neuroimaging methods
to establish and study brain networks. For example,
Sotiropoulos and Zalesky (2019) provide an excellent review
for how this can be achieved that would have relevance for
understanding brain maturation and neuropsychological out-
come. From a network perspective, each network probably
has its own unique maturation sequence. For example, in
Fig. 24, the visual and somatomotor networks based on neu-
robehavioral data likely reach asymptote earlier that the more
cognitive networks, with the limbic-emotional network prob-
ably the last (Braun, 2011). As neuroimaging methods im-
prove in the quantification of network neuroscience, it is an-
ticipated that more specific timeframes associated with net-
work maturation will also be forthcoming. As shown in Fig.
9, it is likely that the ability for neuropsychological measures
to better assess brain-behavior relations would be improved, if
different neurobehavioral and neurocognitive measures could
be directly linked to neuroimaging-derived brain age
coefficients.

Fig. 21 Functional brain maturation curve. Individual functional brain
maturity levels of 238 rs-fcMRI scans (115 females) between the ages
of 7 and 30 years. Chronological age is shown on the x-axis and the
fcMRI on the y-axis (females: pink, males: blue). The fit for the von
Bertalanffy equation (a·(1 − e − bx), r2 = 0.553, permutation test,
P < 0.001, AIC weight = 0.3) is shown with a solid black line. The fit
for the Pearl-Reed equation (a / (1 + b · e − cx), r2 = 0.555, AIC weight =
0.23) is shown with a solid gray line. The 95% prediction limits are
shown with dashed lines. From Dosenbach et al. (2010), used with per-
mission from the American Association for the Advancement of Science

Fig. 22 Regional and Methodological Variance in Neurodevelopmental
Indices from Somerville (2016). a Trajectories of cortical gray matter
volume adjusting for total brain volume. Trajectories are schematized
from data reported in Ostby et al. (2009). b Ages of developmental

asymptote for connectivity and structural data. Resting-state, functional
connectivity MRI (rs-fcMRI) data from Dosenbach et al. (2010) and the
other measures reflect data reported in Tamnes et al. (2010). Note that the
operationalization of “asymptote” varies by study
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Clinical Significance
of Neuroimaging-Derived Indices of Brain
Development

Brain Development and Neuropsychiatric Disorder:
Adverse Childhood Experiences

Normal neural development is experience dependent
(Holtmaat & Svoboda, 2009). This, in turn, means that expe-
rience shapes neural circuits and connectivity. From what has
been reviewed above, this also means that certain environ-
ments, external factors, and influences may impact both struc-
tural development (i.e., size) and neural communication (i.e.,
connectivity).

Considerable research has now been conducted on chil-
dren, adolescents, and adults who have experienced childhood
maltreatment. How does that maltreatment affect brain devel-
opment and does the stage of brain development at the point
where an adverse childhood experience (ACE) occurs influ-
ence brain development onward (Braun & Bock, 2011)?
Table 1, from Danese and McEwen (2012), while a decade

old, still represents a summary of some of the neuroimaging
and physiological measures associated with adverse child-
hood experiences (see also Anda et al., 2006; Herzog &
Schmahl, 2018).

Since all aspects of brain development are sensitive to
experience-dependent influences throughout maturation, it is
no surprise that issues related to ACE factor into brain devel-
opment. As described in this review, the methods for image
analysis are relatively new, so the emerging literature on the
potential effects of ACE as revealed in quantitative neuroim-
aging is also just in its initial stage. Socioeconomic status
(SES) has long been examined in the context of child devel-
opment, not only because of SES relations to health and nu-
trition but also because of educational opportunities and par-
enting (Steele et al., 2016). Figure 25 is fromMcDermott et al.
(2019) that examined a larger cohort of 623 youth who
underwent structural MRI with volumetric and shape analy-
ses. They observed a strong positive association between SES
and TBV as well as with both total WM and GM volumes.
Cortical surface area was also positively correlated, and while
cortical thickness was as well, it exhibited the least robust

Fig. 23 Observed individual
volume (in mm3) trajectories and
average trajectories for a right
prefrontal cortical volume and b
left prefrontal cortical volume.
Shaded areas represent 95%
confidence interval. Raw mean
scores for prefrontal cortical
volume are displayed. pfc =
prefrontal cortex. From Becht and
Mills (2020), used with permis-
sion from Elsevier

Fig. 24 Neuroimaging-derived,
7-network schemata. From Yeo
et al. (2014), used with permis-
sion from Elsevier Publishing
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relationship. As shown in Fig. 25, greater SES was also sig-
nificantly associated with all subcortical ROIs examined ex-
cept the pallidum.

While Fig. 25 shows the influence of SES on hippo-
campal and amygdala volume controlling for age, when
examining their trajectories over age and by sex, as

shown in Fig. 26 from Fish et al. (2020), there are
important points of trajectory inflection and peak
development. Note that for both structures, changes
extend into the 20s. Integrating the investigation of
McDermott et al. (2019) with that of Fish et al.
(2020), which both focused on the hippocampus and

Table 1 Summary of the brain, endocrine, and immune correlates of childhood maltreatment in children and adult individuals

Children Adults

Brain Prefrontal cortex: smaller volume, poorer executive functions Prefrontal cortex: smaller volume

Amygdala: possibly larger volume Amygdala: possibly smaller volume, greater startle response

Hippocampus: no changes Hippocampus: smaller volume, deficit in declarative memory

Behavior: poorer attention, greater activity levels, impaired
emotion regulation, and self-regulatory behaviors

Behavior: depression, PTSD, substance abuse

HPA axis Basal levels: higher cortisol levels, flatter cortisol profile Basal levels: higher CRH levels

TSST: blunted cortisol response TSST: blunted (no metal illness) or heightened (with mental
illness) control response

Pharmacological stimulation: blunted ACTH response and
normal cortisol response to CRH test (heightened ACTH
response in depressed + maltreated)

Pharmacological stimulation: blunted (no mental illness) or
heightened (with mental illness) ACTH and cortisol
responses to DEX/CRH test

Immune system Innate immunity: elevated inflammation levels (in depressed +
maltreated)

Innate immunity: elevated inflammation levels

Acquired immunity: poorer response to latent HSV infection Acquired immunity: high T cytotoxic cell/T helper cell ratio,
greater type IV hypersensitivity response

Fig. 25 Main effects of SES on global and local anatomy after controlling
for age and sex. a Standardized effect size of SES on each global cortical
and subcortical brain measure estimated using scaled variables: TBV,
GMV, WMV, CV, SA, mean CT, hippocampus volume, amygdala
volume, thalamus volume, striatum volume, and pallidum volume. b

Cortical surface regions that show a significant positive association of
surface area with childhood SES. c Subcortical surface regions that
show a significant positive association of surface area with childhood
SES
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amygdala from a developmental perspective, these two
structures that are so important to cognitive control and
emotional regulation have a two-decade timeframe of
potential vulnerability from ACE effects.

In their review of ACE effects on the brain, Teicher
et al. (2016) review the literature and speculate on ad-
ditional ROIs as well as neural networks that may be
most affected by abuse, maltreatment, and neglect.
These are diagrammatically presented in Fig. 27.
Because of the intimate relations between experience,
the environment, and rapid brain growth with changes
in the developing brain, the degree, type, and actual
changes in brain structure and function that result from
ACE influence await longitudinal research.

Brain Development and Acquired Injury

The timing of when a brain injury occurs within the devel-
opmental trajectory of an ROI influences how that region
develops from the point of injury on. The degree of
gyrification as shown in Fig. 10 relates to brain develop-
ment, but it can also be an index associated with what hap-
pens when the brain is injured. For example, Wilde et al.
(2020) found an altered pattern of expected development in
cortical gyrification in children who had sustained a trau-
matic injury to the brain, with changes in late-developing
frontal and parietal areas particularly altered. In addition to
whatever focal pathology that may occur from acquired
brain injury, developmentally, how such changes in brain

Fig. 26 Developmental curves and milestones for bulk amygdalar and
hippocampal volume. a Spline-based, group-level trajectories for the bulk
bilateral volume of each structure are shown by sex (males = blue/females
= red). These fit lines are superimposed on spaghetti plots of raw data
showing individual volume measurements (background circles), linked
by lines denoting observations from the same individual. Fit lines are
surrounded by shaded 95% confidence intervals. The three developmen-
tal markers (i.e., age of fastest volume change [circles], age of greatest
change in developmental tempo [triangles], and age at attainment of peak

volume [squares]) overlay the fit lines for each sex and for each structure.
b Spline-based, group-level trajectories for the bulk bilateral volume of
each structure from 1000 bootstrap samples of our data, where we
resampled from the set of 792 individuals with replacement. c
Visualization of developmental milestone timing distributions across
bootstrap samples, stratified by sex, where each point corresponds to
the timing of a developmental milestone in a bootstrap sample. From
Fish et al. (2020), with permission from Elsevier
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structure alter patterns of neural maturation and network
development contributes to the chronicity of cognitive and
behavioral deficits. Alternatively, Wilde et al. (2020) also
observed increased gyrification in some brain-injured chil-
dren, which, over time, may reflect “… a compensatory
mechanism that allows for typical development of cortical
surface area, despite reduced brain volume.” Ewing-Cobbs
et al. (2016) and Wilde et al. (2012a) have shown that the

age of injury influences WM integrity of corpus callosum
development. There is a paucity of research in this area as to
how the timing of acquired brain pathology affects out-
come, brain development after injury, and the contributions
that neuroimaging could provide (Greenham et al., 2020).
This also means a lack of studies relating pediatric neuro-
psychological findings in relation to acquired injury and
neuroimaging.

Fig. 27 Images depicting the potential effects of exposure to specific
types of childhood maltreatment on gray matter volume (GMV) or thick-
ness and fiber tract integrity. Exposure to parental verbal abuse was as-
sociated with increased GMV in the auditory cortex portion of the left
superior temporal gyrus 25 (part a) and decreased integrity of the left
arcuate fasciculus (AF) interconnectingWernicke’s area and Broca’s area
26 (part b). Visually witnessing multiple episodes of domestic violence
was associated with reduced GMV in the right lingual gyrus, left occipital
pole, and bilateral secondary visual cortex (V2) 27 (part c) and with

decreased integrity of the left inferior longitudinal fasciculus (ILF), which
serves as a visual–limbic pathway (part d). Adults reporting exposure to
multiple episodes of childhood forced-contact sexual abuse were found to
have reduced GMV in the right and left primary visual cortex (V1) and
visual association cortices, as well as reduced thickness in right lingual,
left fusiform, and left middle occipital gyri (part e) and portions of the
somatosensory cortex representing the genital area (part f). See Teicher
et al. (2016) for additional research details that form the basis for these
images. Reproduced with permission from Springer Nature Publishing
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Summary

As this review is being published, there are major, multi-site
investigations of brain development as part of the Adolescent
Brain Cognitive Development (ABCD, see Karcher & Barch,
2021) investigation and the previously mentioned ENIGMA
project (see Dennis et al., 2020). There are others as well that
will be multi-site and possess sample sizes and diverse partic-
ipant backgrounds to address the statistical power necessary to
further and more accurately address the complex issues raised
in this review. From all of the images and growth plots pre-
sented in this review, the brain goes through dynamic changes
in the first three decades of life that can be quantified with
neuroimaging. Also, to date, pediatric neuropsychology has
not taken advantage of these unprecedented methods in image
quantification to better utilize a brain-age metric (Franke &
Gaser, 2019; Jiang et al., 2019), integrated with neuropsycho-
logical assessment. One of the other aspects of quantitative
neuroimaging is that the analysis methods are becoming more
and more automated (Oishi et al., 2013), which, to date, has
been advanced primarily in adult neuroimaging (Goodkin
et al., 2019; Pemberton et al., 2021). Nonetheless, with large
normative and publicly accessible neuroimaging datasets and
rapid automated output, it is anticipated that this information
will become available for all aspects of research and clinical
application in pediatric neuropsychology.
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