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NEW IDEAS ON ECONOMIC GROWTH'

Zipf’s Law and the Growth of Cities

By XAVIER GABAIX *

Economic growth has been studied at many
levels, including at the national (Robert Barro,
1991), the regional (Barro and Xavier Sala-i-
Martin, 1992), and the local (Edward Glaeser
et al., 1992)(i.e., at the level of the agglomera-
tion). A striking pattern of agglomerations is
Zipf’s law for cities, which may well be the
most accurate regularity in economics. It appears
to hold in virtually all countries and dates for
which there are data, even the United States in
1790 and India in 1911 (George Zipf, 1949;
Kenneth Rosen and Mitchell Resnick, 1980).
This paper will argue that satisfying Zipf ’s law
should be a prerequisite for taking a model of
local growth seriously, and it will provide some
guidance for this.

To visualize Zipf ’s law, one may take a coun-
try, for instance, the United States in 1991, and
order the largest cities by population: number 1
is New York, number 2 is Los Angeles, and so
on. Then draw a graph: along the y-axis, plot
the log of the rank (New York has log rank In
1, Los Angeles has log rank In 2); and along the
x-axis plot the log of the population (i.e.,
“‘size’”) of the corresponding city. The resulting
graph, shown in Figure 1, shows a straight line,
which is rather surprising. Furthermore, its slope
is —1, based on the regression

In(Rank) = 10.53 — 1.005 In(Size)
[0.010]
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where the standard deviation appears in brack-
ets and the R? is 0.986. The slope of the curve
is very close to —1. This is an expression of
Zipf’s law; when one plots log-rank against
log-size, the result is a straight line, with a
slope, which I shall call -, that is very close
to —1. In terms of the distribution, this means
that the probability that the size of a city is
greater than some S is proportional to 1/S:
Pr(Size > S) = a/S%, with { = 1.

Many explanations of Zipf ’s law have been
proposed, all of which present considerable
difficulties. They can be divided into two
strands: one economic and one that relies on
random processes. The economic explanations
rely on a very delicate balancing of transport
costs, positive and negative externalities, and
productivity differences. The basic problem
with this strand is that it is hard to see how
radically different economic structures (say,
the United States in 1991 and India in 1911)
would produce the same delicate balance of
forces. Looking at the economy this way does
not give any reason why Zipf’s law should
hold. The second line of research relies on ran-
dom processes borrowed from the physical
sciences, probably best exemplified by Herbert
Simon’s (1955) model. The basic problem
with Simon’s model is that, in it, the exponent
in Zipf’s law equates the ratio of the growth
rate of the number of cities to the growth rate
of the population of existing cities. Though
Simon presents theoretical reasons why this
ratio might be 1 (thus explaining Zipf ’s law),
this ratio is in reality significantly less than 1
(Duncan Black and Vernon Henderson,
1999a), and probably tends to O in the long
run (say, in Europe). This means that Simon’s
mechanism does not explain Zipf’s law.

L. Explaining Zipf’s Law by Gibrat’s Law

In Gabaix (1999), I propose the following
explanation: Zipf ’s law derives from Gibrat’s
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FIGURE 1. A PLOT oF LoG RANK (BY POPULATION)
AGAINST LoG PopuLATION FOR U.S. CITiES, 1991

law, where Gibrat’s law means that the growth
process is independent of size. In the basic
model, start with an initial, arbitrary distribu-
tion of N cities. Let each city grow at some
common mean rate, but with some idiosyn-
cratic shocks to the growth rate. Allow the cit-
ies to evolve freely, and study the limit
distribution of their normalized size, S' (i = 1
... N). That is, S’ is the population of city i
divided by the total urban population. Thus,
=N, 8¢ =1 at each date .

Consider that, at least in the upper tail, the
process is of the form: S¢,, = yi, Si, where
the v}, ,’s are independently and identically dis-
tributed city growth factors. Since =, S =1,
the average normalized size must stay constant,
so E[y] = 1. Call G,(S) = Pr(S, > S) the tail
distribution of city sizes at time ¢. The equation
of motion for G, is G,,(S) = E[G,(S/y)].
Suppose (and one can give simple conditions for
this to hold) that there is a steady-state process
G, = G. It verifies G(S) = E[G(S/y)]. But
because E[y] = 1, a distribution like Zipf ’s law
of the type G(S) = a/S, satisfies this steady-
state equation. In fact, one can prove that this
Zipf’s law is the necessary steady-state distri-
bution. This is the proposed explanation for
Zipf’s law. If cities grow randomly, with the
same expected growth rate and the same stan-
dard deviation, the limit distribution will con-
verge to Zipf’s law.

It is possible to make the result more intui-
tive. There are two parts to it: first, the exis-
tence of a power law; then the existence of a
power law of —1. The existence of a power
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law can be thought of as due to a simple phys-
ical principle: scale invariance. Because the
growth process is the same at all scales, the
final distribution process must be scale-
invariant. This forces it to follow a power law.
To see why the exponent of the power law is
1, visualizing a concrete situation might help.
Suppose that cities are on a discrete grid, and
that at each point in time a city might double,
or halve in size. Because of the constraint that
the average size (understood as share of the
total population) must be constant, the prob-
ability of doubling has to be '/, and the prob-
ability of halving %5 (the expected growth is
., X2+ % X', —1=0). To see how the
number of cities of a given size can be con-
stant, take S-sized cities. Given the doubling
and halving probabilities, the number of 25-
sized cities should be half the number of $-
sized cities, and the number of S/2-sized cities
should be double. This is Zipf’s law.

Two more remarks on this may be useful.
First, while more work is needed, preliminary
evidence presented in Gabaix (1999) supports
Gibrat’s law. Second, empirically, there are
““too few’’ small cities (say, fewer than
100,000 inhabitants) compared to Zipf’s law
(i.e., the slope of the graph in Figure 1 be-
comes shallower for small cities). It turns out
that the same theory provides a simple expla-
nation of this: this phenomenon is what should
be expected if smaller cities have a larger vari-
ance than big cities, as is plausible if one
thinks that their industrial base is less diver-
sified than that of big cities.

II. Which Economic Models Are Compatible
with Zipf’s Law?

Can one reconcile constant-returns-to-scale
(CRS)-like behavior of cities with another bit
of intuition about cities by saying that they are
all about externalities and increasing returns
to scale? We will observe here that there are
two possibilities: (i) the externalities have
bounded effects, and cities are asymptotically
CRS, with small and large cities having
bounded productivity differences; or (ii) they
are unbounded (say, big cities have very large
negative externalities), and one must assume
that technological differences are very big
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with big cities having unbounded technologi-
cal superiority over small cities. The two ef-
fects endogenously compensate each other to
give rise to Zipf’s law.

I consider an extension of the model of
Gabaix (1999) which allows for externali-
ties. This model differs from those of Vernon
Henderson (1974), Jonathan Eaton and Zvi
Eckstein (1997), and Black and Henderson
(1999b) in several respects, notably for the
accent on randomness. In the present model,
there are overlapping-generation agents,
with probability 6 of death. Once they are
born, agents migrate to the city of their
choice. Once they have chosen the city, and
thus paid the high cost of migration, they do
not move until they die. In equilibrium, the
benefit of moving to a city with better amen-
ities at time ¢ + 1 would be much lower than
the moving cost. I now ask what city an
agent will choose when she is born at time
t. The wage in city i is w;,. There are Nj, old
agents and N}, new agents. Because the time
intervals are brief, N%/NS < 1. Given that
the increase in population of city i is then
AN, = Nj, — 6N?, the growth rate for the
city is vy, = Ny/N; — 6. The production
function is A;7(N?)N? f(N?/N?), where A;
is the total productivity in the city, and f
is an increasing, concave function. Here
A;N? f(N}IN?) represents the CRS produc-
tion function of the city, and n(N}) repre-
sents a technological spillover. Because
economically new and old agents are rather
good substitutes, I assume that both fand f’
have values bounded and away from 0. The
nominal wage of new agents is competitive,
at wi = A,mw(N?)f'(N7/IN?).

Finally, the utility derived from a wage w;, is
aN(N?)w;. Here a;A(NY) is the total level of
amenities; N\(N7 ) represents the benefits and
costs of having lots of people in one’s city (e.g.,
the possibility of varied social contact and shar-
ing of public goods with fixed costs, as well as
traffic jams and high rent prices); and a; is the
level of the amenities (quality of schooling, po-
licing, taxation). Assuming that the a; are
bounded away from O and independently and
identically distributed, the decision problem of
choosing one’s city is simply Max;a;,\(N{ )w;.
Because young agents arbitrage across cities, in
equilibrium, all ‘‘utility-adjusted’” wages have
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the same value u,. Thus u, = a,A\(N?)w), or
u = a ANN)T(NG)f' (N3INY), so

U,

M ANNING).
anf (N, NG (Ni)m(

This is the key equation. It says that, as new
agents arbitrage across cities, lower produc-
tivity A; in a city must be compensated by
higher amenities, or favorable externalities
N(NS)w(N3). Given that the left-hand side has
bounded variations across cities (i.e., the ratio
of its values for two different cities is
bounded), the right-hand side must similarly
have bounded variations. This shows two ba-
sic routes to Zipf’s law. The first route is
Gibrat’s law growth and CRS, and the sec-
ond is Gibrat’s law growth with offsetting
unbounded externalities and productivity
differences.

Following the first route, variation of
N(N?)w(NF) is bounded. This means that ex-
ternalities do matter, but (plausibly assum-
ing monotonicity for large N) they die off
for big cities. Asymptotically, cities are
CRS. The necessary correlate of this (be-
cause A N(N;)w(N3) has bounded varia-
tion) is that the productivities A; have
bounded variation across sizes, implying
that productivities do not vary wildly across
cities. Thus, as in Gabaix (1999), the pro-
cess gives rise to Gibrat’s law: the random-
ness of the amenity and productivity shocks
a;, and A;, create shocks to N2/N¢ (hence to
the growth rate of the population), which do
not depend on the size of the city for large
N7, because the externalities A7 have reached
their asymptotic values.

With the second route, one allows
N(N9)w(NS) to have unbounded variations.
For instance, say that it becomes very close to
0 for large N, since big cities have extremely
(at the limit, infinitely ) bad amenities or social
externalities. In this case A; must have un-
bounded variations too: to compensate for their
infinitely bad amenities, very big cities must
have extremely high productivities. For in-
stance, if A; evolves according to some Brown-
ian multiplicative process, and A(N)7(N§
behaves asymptotically like a power law of
N3, then N§ will also follow a Brownian
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multiplicative process. Hence Gibrat’s and
Zipf’s law will be verified.

III. Conclusion

Using a fairly general model of city growth
(introducing specialization in goods and cap-
ital does not change the conclusions of the
analysis), I have shown that essentially two
very different routes to Zipf’s law are possi-
ble. In the first route, cities are approximately
CRS in the upper tail. They can behave dif-
ferently from small cities (e.g., have traffic
jams), but the externalities do not affect
medium-size and big cities differently (the
problems associated with traffic jams reach an
upper bound). Their productivity is not un-
boundedly different than that of smaller cities.
Big cities are big because they embody crys-
tallized randomness. Across sizes, cities do
have differences in amenities, desirability due
to externalities, but these differences are not
enormous; their impact is bounded. The reason
why cities became large is essentially because
of inertia in the creation of jobs: the number
of new jobs is roughly proportional to the
number of existing jobs. With the effect of ex-
ternalities being bounded, wages adjust to
compensate moderate differences in amenities.

In the second route, cities experience exter-
nalities that do not die off in the upper tail: they
become infinitely important as cities grow. Fur-
thermore, cities have very different levels of
productivity. Indeed, those differences are un-
boundedly large. Big cities are big because they
experienced unboundedly large positive produc-
tivity increases, and their size creates very neg-
ative social externalities and spillover (so as to
be equally attractive as small cities for new
workers) or very negative productivity shocks
with unboundedly large and positive spillovers
or externalities. The persistence of these high
productivity differences explains why cities have
very different sizes.

An important question for future empirical
research is to determine which one of those
two worlds we are in. If we are in the first
world, the consequences for city growth mod-
eling would be stark; they would suggest that,
asymptotically, cities behave like CRS econ-
omies. Seeing how this is compatible with the
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new economic geography (Masahisa Fujita et
al., 1999) would also be highly interesting. In
any case, satisfying Zipf’s law is a minimal
criterion of admissibility for any model of city
growth. This law is likely to guide empirical
and theoretical work in the future.
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