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binning. He considered 82 wars between 1820 and
1929 and found that NV = 1 war had log I = 7+ 0.5
(i.e. between 3010000 and 30 100000 battle deaths;
N = 3 wars with log 7 = 6 £+ 0.5. (i.e. between
301000 and 3010000 battle deaths); N = 16 wars
with log I = 5+ 0.5. (i.e. between 30100 and
301000000 battle deaths); and N = 62 wars with
log I =4+£0.5. (i.e. between 3010 and 30 100 battle
deaths). Richardson? pointed out that his statisti-
cal data correlated well with the relation

N=0or1? (2)

taking D = 1. Richardson* extended and updated
his studies in his book “The Statistics of Deadly
Quarrels.” This study considered 105 wars be-
tween 1820 and 1949 and found that N = 2 with
log] = 7£05, N = 7 with logI = 6 £ 0.5,
N = 26 with log I = 5§ £ 0.5, and N = 70 with
log I =4+0.5. Again there is a good correlation
with Eq. (2) taking D = 1.

One of the major criticisms of the use of the num-
ber of battle deaths as a measure of a war’s intensity
is the substantial change in the global population
over the period of time considered. A more logical
measure would be the ratio of battle deaths to the
world’s population prior to the war. However, for
the earlier wars, estimates of the world’s population
are unreliable. For this reason Levy® defines the in-
tensity of a war I as the ratio of battle deaths to
the population of Europe in millions at the time of
the war.

Levy® has tabulated the intensities of 119 wars,
beginning with the war of the League of Venice in
1495-1497 and ending with the Vietnam War in
1965-1973. The largest wars were the Second World
War with I = 93665 and the First World War with
I =57616. When considering data of this type, one
approach is to consider cumulative distributions.
The number of wars with intensities greater than
I, Ng, is plotted against I. However, when consid-
ering distributions that may exhibit self-organized
criticality it is preferable to consider noncumula-
tive data. One approach is to use “binned” data as
described above. An alternative, but equivalent ap-
proach, is to take the derivative of the cumulative
distribution with respect to intensity dN¢/dI. The
derivative is obtained by taking the mean slope of a
specified number of adjacent data points, in our case
five. The dependence of dN¢/dI on I for the Levy®
distribution of war intensities is given in Fig. 1. If
a fractal (power-law) distribution is applicable we
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Fig. 1 Noncumulative frequency-intensity distribution of
wars based on the Levy (1983) tabulation of war intensities.
The noncumulative number of wars, —~dN¢g/dl, is given as a
function of I. The larger wars correlate well with the fractal
relation [Eq. (3)] taking D = 1.27.

would expect a good correlation with the relation

dN¢ D

ria CcI (3)
This correlation is illustrated in Fig. 1 taking D =
1.27. This is the best fit result for wars with inten-
sities greater than 100. The fit is seen to be quite
good for war intensities greater than about I = 30
and extends over about three orders of magnitude
of data. The deviation for small wars may be real
or may be due to the incompleteness of the data
set.

An alternative approach to the analysis of this
data is in terms of return periods 7. In order to
analyze this data set we order the wars from the
largest (largest value of I) to the smallest (smallest
value of I). The largest war is assigned a return
period equal to the length of the record Tp, the sec-
ond largest war has a return period T3/2, the third
largest has a return period Tp/3, and so forth. For
our data set Tp = 1973-1495 = 478 yrs. The de-
pendence of the war intensity I on return period T
is given in Fig. 2. One formulation of a fractal re-
lation is to relate the war intensity I to the return
period T by the relation

I =0 THe (4)

where H, is the Hausdorf exponent. The straight-
line correlation in Fig. 2 is with H, = 1.54. The
correlation with this fractal (power-law) relation is
quite good for return periods between 8 and 500
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wars based on the Small and Singer (1982) tabulation of waT
intensities. The noncumulative pumber of wars, dNg/dl2, is
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Fig. 4 Dependence of the war intensity 2, defined by

Small and Singer (1982), on the return period T The larger
wars correlate well with the fractal relation Eq. (4)] taking

H, =139
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that has been called self-organized criticality.” In
self-organized criticality the “input” to a complex
system is steady; whereas the output is a series
of events or “avalanches” that follow a power-law
(fractal) frequency-size distribution. The concept
of self-organized criticality has been primarily dis-
cussed in terms of three models; the “forest-fire”
model, the “sandpile” model, and the “slider-block”
model. There is evolving evidence that many nat-
ural phenomena, including such hazards as earth-
quakes, forest fires, and landslides, may also be ex-
amples of self-organized criticality.

Although the forest-fire model® was not the first
model to be associated with self-organized critical
behavior, it is probably the most illustrative. The
forest-fire model we consider consists of a square
grid of sites. At each time step, a model tree is

dropped on a randomly chosen site; if the site is un-
occupied, the tree is planted, or a match is dropped
on a site. The sparking frequency, fs, is the inverse
number of attempted tree drops on the square grid
before a model match is dropped. If fs = 1/100,
there have been 99 attempts to plant trees (some
successful, some unsuccessful) before a match is
dropped at the 100th time step. If the match is
dropped on an empty site, nothing happens. If it
is dropped on a tree, the tree ignites and a model
fire consumes that tree and the adjacent trees.
Having specified the size of the square grid, Ng,
and the sparking frequency, fs, a simulation is run
for Ng time steps and the number of fires Np with
area Ap is determined. The area, Ap, is the num-
ber of trees that burn in a fire. Examples of four
typical model fires are given in Fig. 5. In these

Fig. 5 Four examples of typical model forest fires are given. This run was carried out on a 128 x 128 grid with f» = 1/2000.
The heavily shaded regions are the forest fires. The lightly shaded regions are unburned forest. The white regions are
unoccupied sites. The areas Ar of the four forest fires are (a) 5, (b) 51, (c) 505 and (d) 5327 trees. The largest forest fire is

seen to span the entire grid.



©Xamples, the grid size is 128 x 128 (N, = 16 384),

1/§, = 2000, and fires with Ap = 551506, and 5327
treeg are illustrated. Figure 5(d) is an example of a
Special class of forest fires which span the grid.

Noncumulative frequency-size statistics for the
model forest fires are given in Fig. 6. The num-
, bfsr of fires per time step with area Ap, Np/Ng, is
: gﬂ:en as a function of Ap. Results are given for a
grid size 128 x 128 and three sparking frequencies,
1/fs = 125500, and 2000. In all cases the smaller
fires correlate well with the power-law (fractal)
relation

PN —Q
-~ AF (5)
with a ~ 1. Since Ap ~ 12, where r is the linear di-
| mension, a comparison with Eqgs. (1) and (3) yields
a= D/2.

These results clearly indicate the finite-size ef-
fect of the grid. If fs is large, the frequency-size
distribution begins to deviate significantly from a
; s!;raight—line, such that there is an upper termina-
tion to the power-law distribution. In Fig. 6, the
deviation begins for 1/f; = 125 at Ay ~ 1000. It is
seen that large forest fires become dominant when
Fhe sparking frequency is very small. This is eas-
ily explained on physical grounds. With a large
sparking frequency (for example 1/fs = 125), trees
burn before large clusters can form. If the sparking
frequency is very small (for example 1/fs = 2000),

100,000 - .
100001 ua (a) USA Fish and Wildlife
: o aﬁ‘ g Service Lands
1,000 ¢ 2ot 4284 fires,1986-1 995
100 u
d&ﬁ;o-;
dA; 1
0.1t -
Best-fit line
0.01 slope =-1.3
0.001 TootedNpkdAg) = -1.31TogtAR) + 1.18; = 0.955 1
: %
0.0001 : : - e
0.0001 0.00t 001 01 1 10 100 1,00010,000

Ag, kP

1996), (b) 120 of the largest fire areas in the western Unit

power-law relation [Eq. (4)] taking & = 1.3-1.5.

| Fig. T Noncumulative frequency-area statistics for actual forest fires
examples are given: (a) 4284 fires on US Fish and Wildlife Service Lands during
ed States during 1155-1960, obtained from tree ring data
| and Agee, 1994). (c) 164 fires in Alaskan Boreal Forests during 1
. Australian Capital Territory during 1926-1991 (Austra.'l_ian Capit
number of fires, —dNgr/dAr, is given as & function of Ar. In eac
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Fig. 6 Frequency-size distributions of model forest fires.
The number of fires per time step with size Ar, Nr/Ns, are
given as a function of Ap where Ar is the number of trees
burnt in each fire. Results are given for a grid size 128 x 128
and three sparking frequencies, fs = 1/125, 1/500, 1/2000.
The small fires correlate well with the power-law relation
[Eq. (4)] taking & = 1.02 to 1.16. The finite grid-size effect
can be seen at the smallest firing frequency, fs = 1/2000.

clusters form that span the entire grid before ig-
nition occurs. For very small sparking frequencies
there will be very few small fires. The grid will be-
come very full before a match sparks a fire. The
fires will involve a large aumber of trees, and in
most cases the fires will span the grid.

°'1 (b) Westemn United States
] s 120 fire areas from freé rings
001F o ® o 11 55-1960 (800 years)
. 0.001
oy
dA:
0.0001
Bestfit line
] slope =-1.3
0.00001F
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and wildfires in the United States and Australia. Four
1986-1995 (National Interagency Fire Center,
(Heyerdahl
990-1991 (Kasischke and French, 1995). (d) 298 fires in the
al Territory Bush Fire Council, 1996). The noncumulative
h case, a reasonably good correlation is obtained with the
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Ar, km2
Fig. 7

We now turn our attention to the frequency-size
distribution of actual forest fires and wildfires. Four
forest fire and wildfire data sets from the United
States and Australia are given in Fig. 7. In each
case the noncumulative number of fires per year,
dNgF/dAF, is given as a function of Ap. We use
a dot over the N to indicate that the frequency
data has been divided by the length of the record
to give a frequency “per year.” The first data set
includes 4284 fires on US Fish and Wildlife Lands
during the period 1986-1995.2 The second data set
includes 120 forest fires as interpreted from tree
rings for the western United States for the period
1155-1960.10 The third data set includes 164 fires
in Alaskan Boreal Forests during 1990 and 1991.1!
The fourth data set includes 298 fires in the Aus-
tralian Capital Territory during 1926-1991.12 The
data sets come from a variety of geographic regions
with different vegetation types and climates. The
results given in Fig. 7 are in quite good agree-
ment with the power-law relation [Eq. (5)] with
a=1.3-1.5.

The agreement with power-law (fractal) statis-
tics is quite good, but the slopes are somewhat
higher than the model resuits given above. Consid-
ering the many complexities concerning the initia-
tion and propagation of forest fires and wildfires it
is remarkable that the frequency-magnitude distri-
butions are so similar under such a wide variety of
environments. The proximity of combustible ma-
terial varies widely. The behavior of a particular
fire depends strongly on meteorological conditions.
Fire-fighting efforts extinguish many fires. Despite
these complexities, the application of the statistics

100
o (d) Australian Capital Territory
10l T e, 298 fires, 1926-1991
_ Mg,
A
0.1

0.01 Best-fit line
slope = -1.5

0.001 ¥ logldNloe/dAz) =-1.48%0q(Ae) + 0.30; 2= 0.979

0.0001 — + ' ' -
0.01 0.1 1 10 100 1,000

(Continued)

associated with the forest-fire model appears to be
robust. We conclude that naturally-occurring forest
fires are examples of self-organized critical behavior.

4. DISCUSSION

It appears reasonable to associate the number of
battle deaths in a war with the number of trees
that burn (the area) in a forest fire. If this is
done, the frequency-intensity distributions for wars
given in Figs. 1 and 3 are remarkably similar to the
frequency-size distributions for forest fires given in
Fig. 7. For the two definitions of war intensity we
have a = 1.27 and 1.40. For the four data sets for
forest fires given in Fig. 7 we have o = 1.3, 1.3, 1.4,
1.5. We can explain this behavior for forest fires in
terms of the forest-fire model, but a key question is
whether this explanation is also valid for wars.
The behavior of the forest-fire model can be ex-
plained in terms of a cascade model. If trecs are
randomly planted on a grid the distribution of clus-
ter sizes is exponential (Poisonian) not power-law
(fractal). The distribution of cluster sizes in the
forest-fire model is power law (fractal). Thisis be-
cause clusters of trees continuously grow and com-
bine to form larger clusters. Small fires sample this
population of clusters but the loss of trees in fires
is dominated by the largest fires. There is a self-
similar cascade of trees from small to large clusters.
In terms of the forest-fire model a spark ignites a
tree and the model fire consumes the entire clus-
ter to which this tree belongs. This is also the
case for real forest fires. Ignition of the forest must
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E)l&me for a fire to take place, and the fire
i(;rll spread through the contiguous lammable
war ¥rmst begin in a manner similar to the
Qn of a forest. One country may invade an-
.cnunl;ry, or a prominent politician may be
sinated., The war will then spread over the
guous region of metastable countries. Such re-
i of f‘\neta,stability could be the countries of the
}le Iha‘ﬁt (Tran, Iraq, Syria, Israel, Egypt, etc.)
'the former Yugoslavia (Serbia, Bosnia, Croa-
F:t(:.). These are then the metastable clusters.
yne cases the metastable clusters could com-
Albania and Greece bridge the gap between
metastable clusters of the Middle East and the
er Yugoslavia.
le now consider briefly the implications of the
‘I‘ts given above. Saperstein'® has discussed the
tion of wars to complexity theory in a general
One can qualitatively discuss the breakdown
I‘(’l(‘l in the world in a similar manner to the “for-
fires” in the forest-fire model. In the forest-fire
Tlel3 sometimes a match starts a fire and some-
es it cloes not. Some fires are large and some are
Al. But the frequency-size statistics are power-
. In terms of world order there are small conflicts
}t.l"r'léxy or may not grow into major wars. The sta-
zing and destabilizing influences are clearly very
nplex. The results we have shown indicate that
rl(.l order behaves as a self-organized critical sys-
1 independent of the efforts made to control and
bilize interactions between people and countries.
It is casy to argue that the results given here
nnot be significant. The introduction of weapons
mass destruction, particularly the atom bomb,
ust change global interactions and the associated
ars. However, as we have shown, the frequency-
ea statistics of real forest fires are well approxi-
ated by power-law distributions with slopes near
3. Again it can be argued that attempts to extin-
aish fires, changing land-use practices, and other
aman interventions should have affected the r€-
alting distribution of fires. But a variety of cor-
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Ee'latllons show that the power-law, frequency-size
1SFr1but10ns of these complex phenomena remain
valid. We argue that this is also the case for wars.
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‘ \e metastable clusters of the Middle East and the
former Yugoslavia.
reswie now consider briefly the implications of the
u ‘ts given above. Saperstein13 has discussed the
relation of wars to complexity theory in 2 general
way. One can qualitatively discuss the breakdown
of order in the world in a similar manner to the “for-
est fires” in the forest-fire model. In the forest-fire
Irllodelz sometimes a match starts a fire and some-
times it does not. Some fires are large and some are
small. But the frequency-size statistics are power-
law. In terms of world order there are small conflicts
tf-lz?,t may or may not grow into major wars. The sta-
bilizing and destabilizing influences are clearly very
complex. The results we have shown indicate that
Worlc‘l order behaves as a self-organized critical sys-
tem }ndependent of the efforts made to control and
stabll?ze interactions between people and countries.
Tt is easy to argue that the results given here
cannot be significant. The introduction of weapons
of mass destruction, particularly the atom bomb,
must change global interactions and the associated
wars. However, as we have shown, the frequency-
aren statistics of real forest fires are well approxi-
mated by power-law distributions with slopes near
1.3. Again it can be argued that attempts to extin-
guish fires, changing land-use practices, and other
human interventions should have affected the re-
sulting distribution of fires. But a variety of cor-
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relations show that the power-law, frequency-size
distributions of these complex phenomena remain
valid. We argue that this is also the case for wars.
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